939 resultados para SINUS ANATOMICAL VARIATIONS
Resumo:
The purpose of this study was to analyze the width and height of edentulous sites in the posterior maxilla using cone beam computed tomography (CBCT) images from patients referred for implant therapy. A total of 122 CBCT scans were included in the analysis, resulting in a sample size of 252 edentulous sites. The orofacial crest width was measured in coronal slices, perpendicular to the alveolar ridge. The bone height was analyzed in the respective sagittal slices. Additionally, the following secondary outcome parameters were evaluated: the morphology of the sinus floor, the presence of septa in the maxillary sinus, and the thickness of the sinus membrane. The mean crest width for all analyzed sites was 8.28 mm, and the mean bone height was 7.22 mm. The percentage of patients with a crest width of less than 6 mm was 27% in premolar sites and 7.8% in molar sites. The bone height decreased from premolar to molar areas, with a high percentage of first and second molar sites exhibiting a bone height of less than 5 mm (54.12% and 44.64%, respectively). Regarding the morphology of the sinus floor, 53% of the edentulous sites exhibited a flat configuration. A septum was present in 67 edentulous sites (26.59%). Analysis of the sinus membrane revealed 88 sites (34.9%) with increased mucosal thickness (> 2 mm). For the crest width, the location of the edentulous site and the morphology of the sinus floor were both statistically significant variables. For the crest width and mean bone height, the location of the edentulous site and the morphology of the sinus floor were both statistically significant variables. The study confirmed that a high percentage of edentulous sites in the posterior maxilla do require sinus floor elevation to allow the placement of dental implants. Therefore, a detailed three-dimensional radiograph using CBCT is indicated in most patients for proper treatment planning.
Resumo:
OBJECTIVE Marked differences exist between human knee and ankle joints regarding risks and progression of osteoarthritis (OA). Pathomechanisms of degenerative joint disease may therefore differ in these joints, due to differences in tissue structure and function. Focussing on structural issues which are design goals for tissue engineering, we compared cell and matrix morphologies in different anatomical sites of adult human knee and ankle joints. METHODS Osteochondral explants were acquired from knee and ankle joints of deceased persons aged 20 to 40 years and analyzed for cell, matrix and tissue morphology using confocal and electron microscopy and unbiased stereological methods. Variations associated with joint (knee versus ankle) and biomechanical role (convex versus concave articular surfaces) were identified by 2-way analysis of variance and post-hoc analysis. RESULTS Knee cartilage exhibited higher cell densities in the superficial zone than ankle cartilage. In the transitional zone, higher cell densities were observed in association with convex versus concave articular surfaces, without significant differences between knee and ankle cartilage. Highly uniform cell and matrix morphologies were evident throughout the radial zone in the knee and ankle, regardless of tissue biomechanical role. Throughout the knee and ankle cartilage sampled, chondron density was remarkably constant at approximately 4.2×10(6) chondrons/cm(3). CONCLUSION Variation of cartilage cell and matrix morphologies with changing joint and biomechanical environments suggests that tissue structural adaptations are performed primarily by the superficial and transitional zones. Data may aid the development of site-specific cartilage tissue engineering, and help identify conditions where OA is likely to occur.
Resumo:
INTRODUCTION Mitral isthmus (MI) ablation is an effective option in patients undergoing ablation for persistent atrial fibrillation (AF). Achieving bidirectional conduction block across the MI is challenging, and predictors of MI ablation success remain incompletely understood. We sought to determine the impact of anatomical location of the ablation line on the efficacy of MI ablation. METHODS AND RESULTS A total of 40 consecutive patients (87% male; 54 ± 10 years) undergoing stepwise AF ablation were included. MI ablation was performed in sinus rhythm. MI ablation was performed from the left inferior PV to either the posterior (group 1) or the anterolateral (group 2) mitral annulus depending on randomization. The length of the MI line (measured with the 3D mapping system) and the amplitude of the EGMs at 3 positions on the MI were measured in each patient. MI block was achieved in 14/19 (74%) patients in group 1 and 15/21 (71%) patients in group 2 (P = NS). Total MI radiofrequency time (18 ± 7 min vs. 17 ± 8 min; P = NS) was similar between groups. Patients with incomplete MI block had a longer MI length (34 ± 6 mm vs. 24 ± 5 mm; P < 0.001), a higher bipolar voltage along the MI (1.75 ± 0.74 mV vs. 1.05 ± 0.69 mV; P < 0.01), and a longer history of continuous AF (19 ± 17 months vs. 10 ± 10 months; P < 0.05). In multivariate analysis, decreased length of the MI was an independent predictor of successful MI block (OR 1.5; 95% CI 1.1-2.1; P < 0.05). CONCLUSIONS Increased length but not anatomical location of the MI predicts failure to achieve bidirectional MI block during ablation of persistent AF.
Resumo:
The anterior superior alveolar nerve (ASAN) is a branch of the infraorbital nerve. Only few studies have morphometrically evaluated the course of the ASAN. Midfacial segments of ten hemisectioned fresh adult cadaver heads were dissected to uncover the anterior wall of the maxilla. Specimens were subsequently decalcified and the bone overlying the ASAN was removed under a microscope to expose the ASAN. Its branching pattern from the infraorbital nerve was recorded, and the course of the ASAN within the anterior wall of the maxillary sinus was morphometrically assessed measuring distances to predefined landmarks using a digital caliper. A distinct ASAN was observed in all specimens. It arose lateral (six cases) or inferior (four cases) from the infraorbital nerve. The point of origin was located at a mean distance of 12.2 ± 5.79 mm posterior to the infraorbital foramen. The ASAN was located on average 2.8 ± 5.13 mm lateral to the infraorbital foramen. After coursing medially, the ASAN ran inferior to the foramen at a mean distance of 5.5 ± 3.07 mm. When approaching the nasal aperture, the loop of the ASAN was on average 13.6 ± 3.07 mm above the nasal floor. The horizontal mean distance from the ASAN to the nasal aperture was 4.3 ± 2.74 mm halfway down from the loop, and 3.3 ± 2.60 mm at the floor of the nose, respectively. In conclusion, the present study evaluated the course of the ASAN relative to the infraorbital foramen and nasal aperture. This information is helpful to avoid damage to this anatomical structure during interventions in the infraobrital region of the maxilla. Further, knowledge of the course of the ASAN and of its bony correlate (canalis sinuosus) may be valuable in interpreting anesthetic or radiologic findings in the anterior maxilla.
Resumo:
Recent work has shown that the cardiac outflow tract of sharks and chimaeras does not consist of a single myocardial component, the conus arteriosus, as classically accepted, but two, namely, the myocardial conus arteriosus and the non-myocardial bulbus arteriosus. However, the anatomical composition of the outflow tract of the batoid hearts remains unknown. The present study was designed to fill this gap. The material examined consisted of hearts of two species of rays, namely, the Mediterranean starry ray (Raja asterias) and sandy ray (Leucoraja circularis). They were studied using scanning electron microscopy, and histochemical and inmunohistochemical techniques. In both species, the outflow tract consists of two components, proximal and distal with regard to the ventricle. The proximal component is the conus arteriosus; it is characterized by the presence of compact myocardium in its wall and several transverse rows of pocket-shaped valves at its luminal side. Each valve consists of a leaflet and its supporting sinus. Histologically, the leaflet has two fibrosas, inner and outer, and a middle coat, the spongiosa. The distal component lacks myocardium. Its wall consists of smooth muscle cells, elastic fibers and collagen. Thus, it shows an arterial-like structure. However, it differs from the aorta because it is covered by the epicardium and crossed by coronary arteries. These findings indicate that the distal component is morphologically equivalent to the bulbus arteriosus of sharks and chimaeras. In contrast to foregoing descriptions, the valves of the first transverse row are distally anchored to the bulbus arteriosus and not to the ventral aorta. Our findings give added support to the notion that presence of a bulbus arteriosus at the arterial pole of the heart is common to all chondrichtyans, and not an apomorphy of actinopterygians as classically thought.
Resumo:
The establishment of radiofrequency catheter ablation techniques as the mainstay in the treatment of tachycardia has renewed new interest in cardiac anatomy. The interventional arrhythmologist has drawn attention not only to the gross anatomic details of the heart but also to architectural and histological characteristics of various cardiac regions that are relevant to the development or recurrence of tachyarrhythmias and procedural related complications of catheter ablation. In this review, therefore, we discuss some anatomic landmarks commonly used in catheter ablations including the terminal crest, sinus node region, Koch’s triangle, cavotricuspid isthmus, Eustachian ridge and valve, pulmonary venous orifices, venoatrial junctions, and ventricular outflow tracts. We also discuss the anatomical features of important structures in the vicinity of the atria and pulmonary veins, such as the esophagus and phrenic nerves. This paper provides basic anatomic information to improve understanding of the mapping and ablative procedures for cardiac interventional electrophysiologists.
Resumo:
Fusionless scoliosis surgery is an emerging treatment for idiopathic scoliosis as it offers theoretical advantages over current forms of treatment. Anterior vertebral stapling using a nitinol staple is one such treatment. Despite increasing interest in this technique, little is known about the effects on the spine following insertion, or the mechanism of action of the staple. The aims of this study were threefold; (1) to measure changes in the bending stiffness of a single motion segment following staple insertion, (2) to describe the forces that occur within the staple during spinal movement, and (3) to describe the anatomical changes that occur following staple insertion. Results suggest that staple insertion consistently decreased stiffness in all directions of motion. An explanation for the finding may be found in the outcomes of the strain gauge testing and micro-CT scan. The strain gauge testing showed that once inserted, the staple tips applied a baseline compressive force to the surrounding trabecular bone and vertebral end-plate. This finding would be consistent with the current belief that the clinical effect of the staples is via unilateral compression of the physis. Interestingly however, as each specimen progressed through the five cycles of each test, the baseline load on the staple tips gradually decreased, implying that the force at the staple tip-bone interface was decreasing. We believe that this was likely occurring as a result of structural damage to the trabecular bone and vertebral end-plate by the staple effectively causing ‘loosening’ of the staple. This hypothesis is further supported by the findings of the micro-CT scan. The pictures depict significant trabecular bone and physeal injury around the staple blades. These results suggest that the current hypothesis that stapling modulates growth through physeal compression may be incorrect, but rather the effect occurs through mechanical disruption of the vertebral growth plate.
Resumo:
Adolescent Idiopathic Scoliosis (AIS) is the most common deformity of the spine, affecting 2-4% of the population. Previous studies have shown that the vertebrae in scoliotic spines undergo abnormal shape changes, however there has been little exploration of how AIS affects bone density distribution within the vertebrae. Existing pre-operative CT scans of 53 female idiopathic scoliosis patients with right-sided main thoracic curves were used to measure the lateral (right to left) bone density profile at mid-height through each vertebral body. This study demonstrated that AIS patients have a marked convex/concave asymmetry in bone density for vertebral levels at or near the apex of the scoliotic curve. To the best of our knowledge, the only previous studies of bone density distribution in AIS are those of Périé et al [1,2], who reported a coronal plane ‘mechanical migration’ of 0.54mm toward the concavity of the scoliotic curve in the lumbar apical vertebrae of 11 scoliosis patients. This is comparable to the value of 0.8mm (4%) in our study, especially since our patients had more severe scoliotic curves. From a bone adaptation perspective, these results suggest that the axial loading on the scoliotic spine is strongly asymmetric.
Resumo:
Adolescent Idiopathic Scoliosis (AIS) is the most common deformity of the spine, affecting 2-4% of the population. Previous studies have shown that the vertebrae in scoliotic spines undergo abnormal shape changes, however there has been little exploration of how scoliosis affects bone density distribution within the vertebrae. In this study, existing CT scans of 53 female idiopathic scoliosis patients with right-sided main thoracic curves were used to measure the lateral (right to left) bone density profile at mid-height through each vertebral body. Five key bone density profile measures were identified from each normalised bone density distribution, and multiple regression analysis was performed to explore the relationship between bone density distribution and patient demographics (age, height, weight, body mass index (BMI), skeletal maturity, time since Menarche, vertebral level, and scoliosis curve severity). Results showed a marked convex/concave asymmetry in bone density for vertebral levels at or near the apex of the scoliotic curve. At the apical vertebra, mean bone density at the left side (concave) cortical shell was 23.5% higher than for the right (convex) cortical shell, and cancellous bone density along the central 60% of the lateral path from convex to concave increased by 13.8%. The centre of mass of the bone density profile at the thoracic curve apex was located 53.8% of the distance along the lateral path, indicating a shift of nearly 4% toward the concavity of the deformity. These lateral bone density gradients tapered off when moving away from the apical vertebra. Multi-linear regressions showed that the right cortical shell peak bone density is significantly correlated with skeletal maturity, with each Risser increment corresponding to an increase in mineral equivalent bone density of 4-5%. There were also statistically significant relationships between patient height, weight and BMI, and the gradient of cancellous bone density along the central 60% of the lateral path. Bone density gradient is positively correlated with weight, and negatively correlated with height and BMI, such that at the apical vertebra, a unit decrease in BMI corresponds to an almost 100% increase in bone density gradient.
Resumo:
Channel measurements and simulations have been carried out to observe the effects of pedestrian movement on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) channel capacity. An in-house built MIMO-OFDM packet transmission demonstrator equipped with four transmitters and four receivers has been utilized to perform channel measurements at 5.2 GHz. Variations in the channel capacity dynamic range have been analysed for 1 to 10 pedestrians and different antenna arrays (2 × 2, 3 × 3 and 4 × 4). Results show a predicted 5.5 bits/s/Hz and a measured 1.5 bits/s/Hz increment in the capacity dynamic range with the number of pedestrian and the number of antennas in the transmitter and receiver array.
Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker.
Resumo:
BACKGROUND: Although we know much about the molecular makeup of the sinus node (SN) in small mammals, little is known about it in humans. The aims of the present study were to investigate the expression of ion channels in the human SN and to use the data to predict electrical activity. METHODS AND RESULTS: Quantitative polymerase chain reaction, in situ hybridization, and immunofluorescence were used to analyze 6 human tissue samples. Messenger RNA (mRNA) for 120 ion channels (and some related proteins) was measured in the SN, a novel paranodal area, and the right atrium (RA). The results showed, for example, that in the SN compared with the RA, there was a lower expression of Na(v)1.5, K(v)4.3, K(v)1.5, ERG, K(ir)2.1, K(ir)6.2, RyR2, SERCA2a, Cx40, and Cx43 mRNAs but a higher expression of Ca(v)1.3, Ca(v)3.1, HCN1, and HCN4 mRNAs. The expression pattern of many ion channels in the paranodal area was intermediate between that of the SN and RA; however, compared with the SN and RA, the paranodal area showed greater expression of K(v)4.2, K(ir)6.1, TASK1, SK2, and MiRP2. Expression of ion channel proteins was in agreement with expression of the corresponding mRNAs. The levels of mRNA in the SN, as a percentage of those in the RA, were used to estimate conductances of key ionic currents as a percentage of those in a mathematical model of human atrial action potential. The resulting SN model successfully produced pacemaking. CONCLUSIONS: Ion channels show a complex and heterogeneous pattern of expression in the SN, paranodal area, and RA in humans, and the expression pattern is appropriate to explain pacemaking.
Resumo:
The article presents a criticism of the accounts of John Carey in his book entitled "The Intellectuals and the Masses." The author focuses on Carey's argument that the art is not an eternal category but an invention of the late eighteenth century and it no longer has any intellectual legitimacy other than that of provoking feelings which are no more and no less valuable than those provoked by any other form of entertainment or physical activity