969 resultados para SHAPE TRANSFORMATION
Resumo:
The chlorophyll fluorescence kinetics of marine red alga Grateloupia turutunt Yamada, green alga Ulva pertusa Kjellm and brown alga Laminaria japonica Aresch during natural sustained dehydration were monitored and investigated. The pulse amplified modulation (PAM) system was used to analyze the distinct fluorescence parameters during thallus dehydration. Results proved that the fluorescence kinetics of different seaweed all showed three patterns of transformation with sustained water loss. These were: 1) peak kinetic pattern (at the early stage of dehydration fluorescence enhanced and quenched subsequently, representing a normal physiological state). 2) plateau kinetic pattern (with sustained water loss fluorescence enhanced continuously but quenching became slower, finally reaching its maximum). 3) Platform kinetic pattern (fluorescence fell and the shape of kinetic curve was similar to plateau kinetic pattern). A critical water content (CWC) could be found and defined as the percentage of water content just prior to the fluorescence drop and to be a significant physiological index for evaluation of plant drought tolerance. Once thallus water content became lower than this value the normal peak pattern can not be recovered even through rehydration, indicating an irreversible damage to the thylakoid membrane. The CWC value corresponding to different marine species were varied and negatively correlated with their desiccation tolerance, for example. Laminaria japonica had the highest CWC value (around 90%) and the lowest dehydration tolerance of the three. In addition, a fluorescence "burst" was found only in red algae during rehydration. The different fluorescence parameters F-o, F-v and F-v, F-m were measured and compared during water loss. Both F-o and F-v increased in the first stage of dehydration but F-v/F-m. kept almost constant. So the immediate response of in vivo chlorophyll fluorescence to dehydration was an enhancement. Later with sustained dehydration F-o increased continuously while F-v decreased and tended to become smaller and smaller. The major changes in fluorescence (including fluorescence drop during dehydration and the burst during rehydration) were all attributed to the change in F-o instead of F-v This significance of F-o indicates that it is necessary to do more research on F-o as well as on its relationship with the state of thylakoid membrane.
Resumo:
The objective of my Portfolio is to explore the working hypothesis that the organic growth of a firm is governed by the perspectives of individuals and such perspectives are governed by their meaning-making. The Portfolio presents explorations of the transformation of my meaning making and in adopting new practices to support the organic growth of a firm. I use the work of other theorists to transition my understanding of how the world works. This transition process is an essential tool to engage with and understand the perspectives of others and develop a mental capacity to “train one’s imagination to go visiting” (Arendt, 1982; p.43). The Portfolio, therefore, is primarily located in reflective research. Using Kegan’s (1994) approach to Adult Mental Development, and Sowell’s (2007) understanding of the visions which silently shape our thoughts I organise the developments of my meaning making around three transformation pillars of change. In pillar one I seek to transform an unthinking respect for authority and break down a blind pervasiveness of thought within my reasoning process arising from an instinct for attachment and support from others whom I trust. In pillar two I seek to discontinue using autocratic leadership and learn to use the thoughts and contributions of a wider team to make improved choices about uncertain future events. In pillar three I explore the use of a more reflective thinking framework to test the accuracy of my perceptions and apply a high level of integrity in my reasoning process. The transformation of my meaning making has changed my perspectives and in turn my preferred practices to support the organic growth of a firm. I identify from practice that a transformative form of leadership is far more effective that a transactional form of leadership to stimulate the trust and teamwork required to sustain the growth a firm. Creating an environment where one feels free to share thoughts and feelings with others is an essential tool to build a team to critique the thoughts of one other. Furthermore, the entrepreneurial wisdom to grow a firm must come from a wider team, located both inside and outside the boundaries of a firm. No individual or small team has the mental capacity to provide the entrepreneurship required to drive the organic growth of a firm. I address my Portfolio to leaders in organisations who have no considered framework on the best practices required to lead a social organisation. These individuals may have no sense of what they implicitly believe drives social causation and they may have no understanding if their meaning making supports or curtails the practices required to grow a firm. They may have a very limited capacity to think in a logical manner, with the result they are using guesses from their ‘gut’ to make poor judgements in the management of a firm.
Construction of invisibility cloaks of arbitrary shape and size using planar layers of metamaterials
Resumo:
Transformation optics (TO) is a powerful tool for the design of electromagnetic and optical devices with novel functionality derived from the unusual properties of the transformation media. In general, the fabrication of TO media is challenging, requiring spatially varying material properties with both anisotropic electric and magnetic responses. Though metamaterials have been proposed as a path for achieving such complex media, the required properties arising from the most general transformations remain elusive, and cannot implemented by state-of-the-art fabrication techniques. Here, we propose faceted approximations of TO media of arbitrary shape in which the volume of the TO device is divided into flat metamaterial layers. These layers can be readily implemented by standard fabrication and stacking techniques. We illustrate our approximation approach for the specific example of a two-dimensional, omnidirectional "invisibility cloak", and quantify its performance using the total scattering cross section as a practical figure of merit. © 2012 American Institute of Physics.
Resumo:
The application of the shape memory alloy NiTi in micro-electro-mechanical-systems (MEMSs) is extensive nowadays. In MEMS, complex while precise motion control is always vital. This makes the degradation of the functional properties of NiTi during cycling loading such as the appearance of residual strain become a serious problem to study, in particular for laser micro-welded NiTi in real applications. Although many experimental efforts have been put to study the mechanical properties of laser welded NiTi, surprisingly, up to the best of our understanding, there has not been attempts to quantitatively model the laser-welded NiTi under mechanical cycling in spite of the accurate prediction required in applications and the large number of constitutive models to quantify the thermo-mechanical behavior of shape memory alloys. As the first attempt to fill the gap, we employ a recent constitutive model, which describes the localized SIMT in NiTi under cyclic deformation; with suitable modifications to model the mechanical behavior of the laser welded NiTi under cyclic tension. The simulation of the model on a range of tensile cyclic deformation is consistent with the results of a series of experiments. From this, we conclude that the plastic deformation localized in the welded regions (WZ and HAZs) of the NiTi weldment can explain most of the extra amount of residual strain appearing in welded NiTi compared to the bare one. Meanwhile, contrary to common belief, we find that the ability of the weldment to memorize its transformation history, sometimes known as ‘return point memory’, still remains unchanged basically though the effective working limit of this ability reduces to within 6% deformation.
Resumo:
NiTi wires of 0.5 mm diameter were laser welded using a CW 100-W fiber laser in an argon shielding environment with or without postweld heat-treatment (PWHT). The microstructure and the phases present were studied by scanning-electron microscopy (SEM), transmission-electron microscopy (TEM), and X-ray diffractometry (XRD). The phase transformation behavior and the cyclic stress–strain behavior of the NiTi weldments were studied using differential scanning calorimetry (DSC) and cyclic tensile testing. TEM and XRD analyses reveal the presence of Ni4Ti3 particles after PWHT at or above 623 K (350 °C). In the cyclic tensile test, PWHT at 623 K (350 °C) improves the cyclic deformation behavior of the weldment by reducing the accumulated residual strain, whereas PWHT at 723 K (450 °C) provides no benefit to the cyclic deformation behavior. Welding also reduces the tensile strength and fracture elongation of NiTi wires, but the deterioration could be alleviated by PWHT.
Resumo:
This article discusses the effects of laser welding parameters such as power, welding speed, and focus position on the weld bead profile, microstructure, pseudo-elasticity (PE), and shape memory effect (SME) of NiTi foil with thickness of 250 um using 100W CW fiber laser. The parameter settings to produce the NiTi welds for analysis in this article were chosen from a fractional factorial design to ensure the welds produced were free of any apparent defect. The welds obtained were mainly of cellular dendrites with grain sizes ranging from 2.5 to 4.8 um at the weld centerline. A small amount of Ni3Ti was found in the welds. The onset of transformation temperatures (As and Ms) of the NiTi welds shifted to the negative side as compared to the as-received NiTi alloy. Ultimate tensile stress of the NiTi welds was comparable to the as received NiTi alloy, but a little reduction in the pseudo-elastic property was noted. Full penetration welds with desirable weld bead profiles and mechanical properties were successfully obtained in this study.
Resumo:
Post-weld heat-treatment (PWHT) has been established as one of the cost-effective ways to improve the functional properties, namely shape memory and super-elastic effects (SME and SE), of laser-welded NiTi alloys. However, the functional performance of the laser-welded joint at different working temperatures has not been explored yet. The purpose of this study is to investigate the effect of different working temperatures on the functional properties of the laser-welded NiTi alloys before and after PWHT by applying cyclic deformation tests. Two laser-welded samples: as-welded and heat-treated sample (after PWHT at 350 oC or 623 K) were tested in this work at room temperature, 50 oC (or 323 K) and 75 oC (or 348 K) respectively. The samples were cyclically loaded and unloaded for 10 cycles up to 4 % strain. The critical stress to induce the martensitic transformation and the residual strain after the cyclic tests were recorded. The results indicate that the heat-treated sample exhibited better functional properties than the as-welded sample at room temperature and 50 oC (or 323 K). However, both the as-welded and heat-treated samples failed in the cyclic tests at 75 oC (or 348 K). These findings are important to determine the feasible working temperature range for the laser-welded NiTi components to exhibit desirable functional properties in engineering applications involving cyclic loading.
Resumo:
This qualitative study is an exploration of transformation theory, the Western tradition, and a critical evaluation of a graduate studies class at a university. It is an exploration of assumptions that are embedded in experience, that influence the experience and provide meaning about the experience. An attempt has been made to identify assumptions that are embedded in Western experience and connect them with assumptions that shape the graduate class experience. The focus is on assumptions that facilitate and impede large group discussions. Jungian psychology of personality type and archetype and developmental psychology is used to analyze the group experience. The pragmatic problem solving model, developed by Knoop, is used to guide thinking about the Western tradition. It is used to guide the analysis, synthesis and writing of the experience of the graduate studies class members. A search through Western history, philosophy. and science revealed assumptions about the nature of truth, reality, and the self. Assumptions embedded in Western thinking about the subject-object relationship, unity and diversity are made explicit. An attempt is made to identify Western tradition assumptions underlying transformation theory. The critical evaluation of the graduate studies class experience focuses upon issues associated with group process, self-directed learning, the educator-learner transaction and the definition of adult education. The advantages of making implicit assumptions explicit is explored.
Resumo:
Cette recherche a pour objet l'étude de la dynamique de transformation du métier d'ingénieur dans le contexte algérien saisi à travers le rapport au travail. Elle repose sur une approche théorique s'inspirant d'une sociologie des groupes professionnels avec une démarche alliant méthodes quantitatives et qualitatives. Prenant appui sur des données recueillies à l'aide d'un questionnaire et d'entretiens approfondis menés dans Sonatrach, la plus grande entreprise d'Algérie, notre étude s'est attachée à faire ressortir les facteurs qui agissent au niveau individuel, organisationnel et sociétal sur les pratiques professionnelles pour deux générations d'ingénieurs. La première a eu pour mission de bâtir le pays à travers les grands projets de développement qui ont caractérisé la période après l'indépendance. La deuxième est arrivée sur le marché de l'emploi, à la fin des années 80, dans un contexte de crise et a payé un lourd tribut à la détérioration de la conjoncture économique. Les pratiques professionnelles se construisent tout d'abord dans le travail, mais aussi dans l'exercice des activités quotidiennes, les relations avec les autres et enfin la satisfaction à l'égard du travail. Tels ont été les points focaux de notre démarche d'explicitation du rapport au travail chez nos ingénieurs. Nous avons mis en lumière l'effet de la position hiérarchique au sein de l'organisation et des types de fonction. La satisfaction tient de la fierté d'appartenir à une entreprise prestigieuse. Chez les jeunes, elle s'exprime aussi dans les avantages matériels et une vision du métier fondée sur la maîtrise technique. Les plus âgés, encore marqués par l'idéologie nationaliste, mettent l'accent sur la participation à l'édification du pays, mais aussi sur la réalisation de soi et la fidélité à l'entreprise. Le rapport au travail s'élabore également au fil du temps dans son cheminement professionnel. Nous l'avons abordé, dans une deuxième étape, en documentant les processus d'intégration et de mobilité au sein de l'entreprise. Les trajectoires professionnelles sont régies par des politiques et des procédures de gestion qui en définissent les modalités, mais elles obéissent également à des opportunités et à des pratiques informelles qui jouent un rôle tout aussi important dans la détermination des profils de carrière. Enfin, le rapport au travail est tributaire de facteurs qui dépassent le cadre de l'entreprise. Dans une troisième étape, nous avons analysé les transformations du système éducatif et leur impact sur la certification des ingénieurs, la crise économique et ses effets en termes de chômage et de précarité et enfin la montée du discours religieux et ses manifestations chez les ingénieurs. Ces facteurs liés au contexte sociétal modifient les représentations et modèlent les attitudes et comportements au travail et à l'égard de celui-ci. Comme le montre notre recherche, le rapport au travail articule, dans une composition complexe, parcours individuels et histoires collectives vécus dans des environnements en évolution. La pratique d'un métier se trouve liée aux différents contextes de socialisation qui traversent les individus. Elle se situe, dans le cas algérien, au croisement d'une formation scientifique et technique qui montre peu de réactivité aux besoins mouvants de l'opérateur économique qu'elle est censée satisfaire, d'une entreprise bureaucratique dans son organisation et dans son fonctionnement où le contournement des règles peut s'ériger en principes de gestion et enfin d'un contexte sociétal qui oscille entre modernité et tradition. Cette dernière est réinterprétée de manière orthodoxe par les mouvements religieux en action dans la société. Ainsi, les ingénieurs investis initialement d'une mission de développement et considérés alors comme "vecteur de modernité" connaissent une détérioration de leur statut et la crise touche la profession vécue cependant différemment selon les générations.
Resumo:
Roughness and defects induced on few-layer graphene (FLG) irradiated by Ar+ ions at different energies were investigated using X-ray photoemission spectroscopy (XPS) and atomic force microscopy techniques. The results provide direct experimental evidence of ripple formation, sp2 to sp3 hybridized carbon transformation, electronic damage, Ar+ implantation, unusual defects and edge reconstructions in FLG, which depend on the irradiation energy. In addition, shadowing effects similar to those found in oblique-angle growth of thin films were seen. Reliable quantification of the transition from the sp2-bonding to sp3-hybridized state as a result of Ar+ ion irradiation is achieved from the deconvolution of the XPS C (1s) peak. Although the ion irradiation effect is demonstrated through the shape of the derivative of the Auger transition C KVV spectra, we show that the D parameter values obtained from these spectra which are normally used in the literature fail to account for the sp2 to sp3 hybridization transition. In contrast to what is known, it is revealed that using ion irradiation at large FLG sample tilt angles can lead to edge reconstructions. Furthermore, FLG irradiation by low energy of 0.25 keV can be a plausible way of peeling graphene layers without the need of Joule heating reported previously
Resumo:
This paper reports a novel region-based shape descriptor based on orthogonal Legendre moments. The preprocessing steps for invariance improvement of the proposed Improved Legendre Moment Descriptor (ILMD) are discussed. The performance of the ILMD is compared to the MPEG-7 approved region shape descriptor, angular radial transformation descriptor (ARTD), and the widely used Zernike moment descriptor (ZMD). Set B of the MPEG-7 CE-1 contour database and all the datasets of the MPEG-7 CE-2 region database were used for experimental validation. The average normalized modified retrieval rate (ANMRR) and precision- recall pair were employed for benchmarking the performance of the candidate descriptors. The ILMD has lower ANMRR values than ARTD for most of the datasets, and ARTD has a lower value compared to ZMD. This indicates that overall performance of the ILMD is better than that of ARTD and ZMD. This result is confirmed by the precision-recall test where ILMD was found to have better precision rates for most of the datasets tested. Besides retrieval accuracy, ILMD is more compact than ARTD and ZMD. The descriptor proposed is useful as a generic shape descriptor for content-based image retrieval (CBIR) applications
Resumo:
The development of new shape memory alloys with high martensitic transformation temperature increases the potential for applications. The development and use of these new alloys depends on the stability of the structure during cycling at high temperatures. If it is possible to guarantee that on alloys keeps the structure during cycling, then the alloy can be used because of the shape memory properties. The aim of this work is to obtain a kinetic model of the forward and backward martensitic transformation of two Cu-Al-Ni-Mn-Ti alloys. Differential scanning calorimetry has been performed in order to establish the kinetic stability of the martensite and the beta transformation. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A new series of high temperature copper based shape memory alloys has recently been patented. These alloys contain 8-20 wt% Al, 1-20 wt% Ag, 0-2 wt% of a minor element (preferably Co), balance copper. The martensitic start transformation temperatures of these alloys are above 200 degrees C and, in some cases, they have good high temperature stability and may be useful in commercial applications where higher operating temperatures than those obtained from Cu-Zn-Al and Cu-Al-Ni shape memory alloys are required.
Resumo:
Includes bibliography