881 resultados para SEROTONIN REUPTAKE INHIBITOR
Resumo:
Clinical and preclinical studies have implicated glial anomalies in major depression. Conversely, evidence suggests that the activity of antidepressant drugs is based, at least in part, on their ability to stimulate density and/or activity of astrocytes, a major glial cell population. Despite this recent evidence, little is known about the mechanism(s) by which astrocytes regulate emotionality. Glial cells communicate with each other through gap junction channels (GJCs), while they can also directly interact with neurons by releasing gliotransmitters in the extracellular compartment via an hemichannels (HCs)-dependent process. Both GJCs and HCs are formed by two main protein subunits: connexins (Cx) 30 and 43 (Cx30 and Cx43). Here we investigate the role of hippocampal Cx43 in the regulation of depression-like symptoms using genetic and pharmacological approaches. The first aim of this study was to evaluate the impact of the constitutive knock-down of Cx43 on a set of behaviors known to be affected in depression. Conversely, the expression of Cx43 was assessed in the hippocampus of mice subjected to prolonged corticosterone (CORT) exposure, given either alone or in combination with an antidepressant drug, the selective serotonin reuptake inhibitor fluoxetine. Our results indicate that the constitutive deficiency of Cx43 resulted in the expression of some characteristic hallmarks of antidepressant-/anxiolytic-like behavioral activities along with an improvement of cognitive performances. Moreover, in a new cohort of wild-type mice, we showed that CORT exposure elicited anxiety and depression-like abnormalities that were reversed by chronic administration of fluoxetine. Remarkably, CORT also increased hippocampal amounts of phosphorylated form of Cx43 whereas fluoxetine treatment normalized this parameter. From these results, we envision that antidepressant drugs may exert their therapeutic activity by decreasing the expression and/or activity of Cx43 resulting from a lower level of phosphorylation in the hippocampus.
Resumo:
The selective serotonin reuptake inhibitor fluoxetine (FLX) is widely prescribed for depression and anxiety-related disorders. On the other hand, enhanced serotonergic transmission is known to be classically related to anxiety. In this study, the effects of acute (5.0 mg/kg) and chronic (5.0 mg/kg, 22 days) FLX were investigated in both food-deprived and non-deprived rats tested in the elevated plus-maze. Significant main effects of the three factors (drug, food condition and administration regimen) were observed, but no interaction between them. The administration of either acute or chronic FLX resulted in an anxiogenic effect, as detected by a significant reduction in the percentage of time spent in the open arms and in the percentage of open arm entries. Food deprivation yielded an anxiolytic-like profile, probably related to changes in locomotor activity. The administration regimen resulted in an anxiolytic profile in chronically treated rats, as would be expected after 22 days of regular handling. The anxiogenic action of acute FLX is consistent with both its neurochemical and clinical profile. The discrepancy between the anxiogenic profile of chronic FLX and its therapeutic uses is discussed in terms of possible differences between the type of anxiety that is measured in the plus-maze and the types of human anxiety that are alleviated by fluoxetine.
Resumo:
The effects of in vivo chronic treatment and in vitro addition of imipramine, a tricyclic antidepressant, or fluoxetine, a selective serotonin reuptake inhibitor, on the cortical membrane-bound Na+,K+-ATPase activity were studied. Adult Wistar rats received daily intraperitoneal injections of 10 mg/kg of imipramine or fluoxetine for 14 days. Twelve hours after the last injection rats were decapitated and synaptic plasma membranes (SPM) from cerebral cortex were prepared to determine Na+,K+-ATPase activity. There was a significant decrease (10%) in enzyme activity after imipramine but fluoxetine treatment caused a significant increase (27%) in Na+,K+-ATPase activity compared to control (P<0.05, ANOVA; N = 7 for each group). When assayed in vitro, the addition of both drugs to SPM of naive rats caused a dose-dependent decrease in enzyme activity, with the maximal inhibition (60-80%) occurring at 0.5 mM. We suggest that a) imipramine might decrease Na+,K+-ATPase activity by altering membrane fluidity, as previously proposed, and b) stimulation of this enzyme might contribute to the therapeutic efficacy of fluoxetine, since brain Na+,K+-ATPase activity is decreased in bipolar patients.
Resumo:
We investigated the somatic maturation of neonate rats treated during the suckling period with citalopram, a selective serotonin reuptake inhibitor. Groups with 6 male neonates were randomly assigned to different treatments 24 h after birth. Each litter was suckled by one of the dams until the 21st postnatal day. Body weight, head axis and tail length were measured daily from the 1st to the 21st postnatal day. Time of ear unfolding, auditory conduit opening, incisor eruption, and eye opening was determined. Pups received 5 mg (Cit5), 10 mg (Cit10) or 20 mg/kg (Cit20) citalopram sc, or saline (0.9% NaCl, w/v, sc). Compared to saline, body weight was lower (24.04%, P < 0.01) for Cit10 from the 10th to the 21st day and for Cit20 from the 6th to the 21st day (38.19%, P < 0.01). Tail length was reduced in the Cit20 group (15.48%, P < 0.001) from the 8th to the 21st day. A reduction in mediolateral head axis (10.53%, P < 0.05) was observed from the 11th to the 21st day in Cit10 and from the 6th to the 21st day in Cit20 (13.16%, P < 0.001). A reduction in anteroposterior head axis was also observed in the Cit20 group (5.28%, P < 0.05) from the 13th to the 21stday. Conversely, this axis showed accelerated growth from the 12th to the 21stday in the Cit5 group (13.05%, P < 0.05). Auditory conduit opening was delayed in the Cit5 and Cit20 groups and incisor eruption was delayed in all citalopram groups. These findings show that citalopram injected during suckling to rats induces body alterations and suggest that the activity of the serotoninergic system participates in growth mechanisms.
Resumo:
Serotonin has been implicated in the neurobiology of depressive and anxiety disorders, but little is known about its role in the modulation of basic emotional processing. The aim of this study was to determine the effect of the selective serotonin reuptake inhibitor, escitalopram, on the perception of facial emotional expressions. Twelve healthy male volunteers completed two experimental sessions each, in a randomized, balanced order, double-blind design. A single oral dose of escitalopram (10 mg) or placebo was administered 3 h before the task. Participants were presented to a task composed of six basic emotions (anger, disgust, fear, happiness, sadness, and surprise) that were morphed between neutral and each standard emotion in 10% steps. Escitalopram facilitated the recognition of sadness and inhibited the recognition of happiness in male, but not female faces. No drug effect on subjective measures was detected. These results confirm that serotonin modulates the recognition of emotional faces, and suggest that the gender of the face can have a role in this modulation. Further studies including female volunteers are needed.
Resumo:
Here we report the effects of subchronic 3, 4-Methylenedioximethamphetamine (MDMA) on the elevated plus-maze, a widely used animal model of anxiety. Rats exposed to a mild chronic stress (MCS) protocol received intracerebroventricular microinjections of the selective serotonin reuptake inhibitor (SSRI) – fluoxetine (2.0ug/ul) or 3, 4-Methylenedioximethamphetamine (MDMA, 2.0ug/ul) for seven days. On the eighth day rats were tested in the elevated plus-maze. Our results showed that sub-chronic MDMA interacted with MCS leading to a decrease in anxiety-related behaviors including: percentage of open arms entries (F[2,26]=4.00; P=0.031), time spent in the open arms (F[2,26]=3.656; P=0.040) and time spent in the open arms extremities (F[2,26]=5.842; P=0.008). These results suggest a potential effect of MDMA in the reversion of the emotional significance of aversive stimuli.
Resumo:
Background Serotonin is under-researched in attention deficit hyperactivity disorder (ADHD), despite accumulating evidence for its involvement in impulsiveness and the disorder. Serotonin further modulates temporal discounting (TD), which is typically abnormal in ADHD relative to healthy subjects, underpinned by reduced fronto-striato-limbic activation. This study tested whether a single acute dose of the selective serotonin reuptake inhibitor (SSRI) fluoxetine up-regulates and normalizes reduced fronto-striato-limbic neurofunctional activation in ADHD during TD. Method Twelve boys with ADHD were scanned twice in a placebo-controlled randomized design under either fluoxetine (between 8 and 15 mg, titrated to weight) or placebo while performing an individually adjusted functional magnetic resonance imaging TD task. Twenty healthy controls were scanned once. Brain activation was compared in patients under either drug condition and compared to controls to test for normalization effects. Results Repeated-measures whole-brain analysis in patients revealed significant up-regulation with fluoxetine in a large cluster comprising right inferior frontal cortex, insula, premotor cortex and basal ganglia, which further correlated trend-wise with TD performance, which was impaired relative to controls under placebo, but normalized under fluoxetine. Fluoxetine further down-regulated default mode areas of posterior cingulate and precuneus. Comparisons between controls and patients under either drug condition revealed normalization with fluoxetine in right premotor-insular-parietal activation, which was reduced in patients under placebo. Conclusions The findings show that a serotonin agonist up-regulates activation in typical ADHD dysfunctional areas in right inferior frontal cortex, insula and striatum as well as down-regulating default mode network regions in the context of impulsivity and TD.
Resumo:
Ayahuasca is psychotropic beverage that has been used for ages by indigenous populations in South America, notably in the Amazon region, for religious and medicinal purposes. The tea is obtained by the decoction of leaves from the Psychotria viridis with the bark and stalk of a shrub, the Banisteriopsis caapi. The first is rich in N-N-dimethyltryptamine (DMT), which has an important and well-known hallucinogenic effect due to its agonistic action in serotonin receptors, specifically 5-HT2A. On the other hand, β-carbolines present in B. caapi, particularly harmine and harmaline, are potent monoamine oxidase inhibitors (MAOi). In addition, the tetrahydroharmine (THH), also present in B. caapi, acts as mild selective serotonin reuptake inhibitor and a weak MAOi. This unique composition induces a number of affective, sensitive, perceptual and cognitive changes in individuals under the effect of Ayahuasca. On the other hand, there is growing interest in the Default Mode Network (DMN), which has been consistently observed in functional neuroimaging studies. The key components of this network include structures in the brain midline, as the anterior medial frontal cortex, ventral medial frontal cortex, posterior cingulate cortex, precuneus, and some regions within the inferior parietal lobe and middle temporal gyrus. It has been argued that DMN participate in tasks involving self-judgments, autobiographical memory retrieval, mental simulations, thinking in perspective, meditative states, and others. In general, these tasks require an internal focus of attention, hence the conclusion that the DMN is associated with introspective mental activity. Therefore, this study aimed to evaluate by functional magnetic resonance imaging (fMRI) changes in DMN caused via the ingestion of Ayahuasca by 10 healthy subjects while submitted to two fMRI protocols: a verbal fluency task and a resting state acquisition. In general, it was observed that Ayahuasca causes a reduction in the fMRI signal in central nodes of DMN, such as the anterior cingulate cortex, the medial prefrontal cortex, the posterior cingulate cortex, precuneus and inferior parietal lobe. Furthermore, changes in connectivity patterns of the DMN were observed, especially a decrease in the functional connectivity of the precuneus. Together, these findings indicate an association between the altered state of consciousness experienced by individuals under the effect of Ayahuasca, and changes in the stream of spontaneous thoughts leading to an increased introspective mental activity
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
Atypical antipsychotics are also used in the treatment of anxiety-related disorders. Clinical and preclinical evidence regarding their intrinsic anxiolytic efficacy has been mixed. In this study, we examined the potential anxiolytic-like effects of risperidone and olanzapine, and compared them with haloperidol, chlordiazepoxide (a prototype of sedative–anxiolytic drug) or citalopram (a selective serotonin reuptake inhibitor). We used a composite of two-way avoidance conditioning and acoustic startle reflex model and examined the effects of drug treatments during the acquisition phase (Experiment 1) or extinction phase (Experiments 2 and 3) on multiple measures of conditioned and unconditioned fear/anxiety-like responses. In Experiment 4, we further compared risperidone, olanzapine, haloperidol, citalopram and chlordiazepoxide in a standard elevated plus maze test. Results revealed three distinct anxiolytic-like profiles associated with risperidone, olanzapine and chlordiazepoxide. Risperidone, especially at 1.0 mg/kg, significantly decreased the number of avoidance responses, 22 kHz ultrasonic vocalization, avoidance conditioning-induced hyperthermia and startle reactivity, but did not affect defecations or time spent on the open arms. Olanzapine (2.0 mg/kg, sc) significantly decreased the number of avoidance responses, 22 kHz vocalization and amount of defecations, but it did not inhibit startle reactivity and time spent on the open arms. Chlordiazepoxide (10 mg/kg, ip) significantly decreased the number of 22 kHz vocalization, avoidance conditioning-induced hyperthermia and amount of defecations, and increased time spent on the open arms, but did not decrease avoidance responses or startle reactivity. Haloperidol and citalopram did not display any anxiolytic-like property in these tests. The results highlight the importance of using multiple measures of fear-related responses to delineate behavioral profiles of psychotherapeutic drugs.
Resumo:
The medial amygdaloid nucleus (MeA) is a sub-region of the amygdaloid complex that has been described as participating in food intake regulation. Serotonin has been known to play an important role in appetite and food intake regulation. Moreover, serotonin 5-HT2C and 5-HT1A receptors appear to be critical in food intake regulation. We investigated the role of the serotoninergic system in the MeA on feeding behavior regulation in rats. The current study examined the effects on feeding behavior regulation of the serotonin reuptake inhibitor, zimelidine, administered directly into the MeA or given systemically, and the serotoninergic receptors mediating its effect. Our results showed that microinjection of zimelidine (0.2, 2 and 20 nmol/100 nL) into the MeA evoked dose dependent hypophagic effects in fasted rats. The selective 5-HT1A receptor antagonist WAY-100635 (18.5 nmol/100 nL) or the 5-HT1B receptor antagonist SB-216641 microinjected bilaterally into the MeA did not change the hypophagic effect evoked by local MeA zimelidine treatment. However, microinjection of the selective 5-HT2C receptor antagonist SB-242084 (10 nmol/100 nL) was able to block the hypophagic effect of zimelidine. Moreover, microinjection of the 5-HT2C receptor antagonist SB-242084 into the MeA also blocked the hypophagic effect caused by zimelidine administered systemically. These results suggest that MeA 5-HT2C receptors modulate the hypophagic effect caused by local MeA administration as well as by systemic zimelidine administration. Furthermore, 5-HT2C into the MeA could be a potential target for systemic administration of zimelidine. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Down syndrome (DS) is a genetic pathology characterized by brain hypotrophy and severe cognitive disability. Although defective neurogenesis is an important determinant of cognitive impairment, a severe dendritic pathology appears to be an equally important factor. It is well established that serotonin plays a pivotal role both on neurogenesis and dendritic maturation. Since the serotonergic system is profoundly altered in the DS brain, we wondered whether defects in the hippocampal development can be rescued by treatment with fluoxetine, a selective serotonin reuptake inhibitor and a widely used antidepressant drug. A previous study of our group showed that fluoxetine fully restores neurogenesis in the Ts65Dn mouse model of DS and that this effect is accompanied by a recovery of memory functions. The goal of the current study was to establish whether fluoxetine also restores dendritic development and maturation. In mice aged 45 days, treated with fluoxetine in the postnatal period P3-P15, we examined the dendritic arbor of newborn and mature granule cells of the dentate gyrus (DG). The granule cells of trisomic mice had a severely hypotrophic dendritic arbor, fewer spines and a reduced innervation than euploid mice. Treatment with fluoxetine fully restored all these defects. Moreover the impairment of excitatory and inhibitory inputs to CA3 pyramidal neurons was fully normalized in treated trisomic mice, indicating that fluoxetine can rescue functional connectivity between the DG and CA3. The widespread beneficial effects of fluoxetine on the hippocampal formation suggest that early treatment with fluoxetine can be a suitable therapy, possibly usable in humans, to restore the physiology of the hippocampal networks and, hence, memory functions. These findings may open the way for future clinical trials in children and adolescents with DS.
Resumo:
BACKGROUND: Novel antidepressant drugs are increasingly used by women of child bearing age. However, potentially harmful effects on fetus and newborn remain unknown. METHODS: Case report and literature review. RESULTS: We present preterm twins whose mother was treated with venlafaxine, a nonselective serotonin reuptake inhibitor, throughout pregnancy until delivery. The twins developed neonatal necrotizing enterocolitis. CONCLUSION: The question whether there might be a correlation between maternal serotonin reuptake inhibitor therapy and neonatal necrotizing enterocolitis is discussed.