993 resultados para SELF-EXPANDABLE METALLIC STENT


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen is the only atom for which the Schr odinger equation is solvable. Consisting only of a proton and an electron, hydrogen is the lightest element and, nevertheless, is far from being simple. Under ambient conditions, it forms diatomic molecules H2 in gas phase, but di erent temperature and pressures lead to a complex phase diagram, which is not completely known yet. Solid hydrogen was rst documented in 1899 [1] and was found to be isolating. At higher pressures, however, hydrogen can be metallized. In 1935 Wigner and Huntington predicted that the metallization pressure would be 25 GPa [2], where molecules would disociate to form a monoatomic metal, as alkali metals that lie below hydrogen in the periodic table. The prediction of the metallization pressure turned out to be wrong: metallic hydrogen has not been found yet, even under a pressure as high as 320 GPa. Nevertheless, extrapolations based on optical measurements suggest that a metallic phase may be attained at 450 GPa [3]. The interest of material scientist in metallic hydrogen can be attributed, at least to a great extent, to Ashcroft, who in 1968 suggested that such a system could be a hightemperature superconductor [4]. The temperature at which this material would exhibit a transition from a superconducting to a non-superconducting state (Tc) was estimated to be around room temperature. The implications of such a statement are very interesting in the eld of astrophysics: in planets that contain a big quantity of hydrogen and whose temperature is below Tc, superconducting hydrogen may be found, specially at the center, where the gravitational pressure is high. This might be the case of Jupiter, whose proportion of hydrogen is about 90%. There are also speculations suggesting that the high magnetic eld of Jupiter is due to persistent currents related to the superconducting phase [5]. Metallization and superconductivity of hydrogen has puzzled scientists for decades, and the community is trying to answer several questions. For instance, what is the structure of hydrogen at very high pressures? Or a more general one: what is the maximum Tc a phonon-mediated superconductor can have [6]? A great experimental e ort has been carried out pursuing metallic hydrogen and trying to answer the questions above; however, the characterization of solid phases of hydrogen is a hard task. Achieving the high pressures needed to get the sought phases requires advanced technologies. Diamond anvil cells (DAC) are commonly used devices. These devices consist of two diamonds with a tip of small area; for this reason, when a force is applied, the pressure exerted is very big. This pressure is uniaxial, but it can be turned into hydrostatic pressure using transmitting media. Nowadays, this method makes it possible to reach pressures higher than 300 GPa, but even at this pressure hydrogen does not show metallic properties. A recently developed technique that is an improvement of DAC can reach pressures as high as 600 GPa [7], so it is a promising step forward in high pressure physics. Another drawback is that the electronic density of the structures is so low that X-ray di raction patterns have low resolution. For these reasons, ab initio studies are an important source of knowledge in this eld, within their limitations. When treating hydrogen, there are many subtleties in the calculations: as the atoms are so light, the ions forming the crystalline lattice have signi cant displacements even when temperatures are very low, and even at T=0 K, due to Heisenberg's uncertainty principle. Thus, the energy corresponding to this zero-point (ZP) motion is signi cant and has to be included in an accurate determination of the most stable phase. This has been done including ZP vibrational energies within the harmonic approximation for a range of pressures and at T=0 K, giving rise to a series of structures that are stable in their respective pressure ranges [8]. Very recently, a treatment of the phases of hydrogen that includes anharmonicity in ZP energies has suggested that relative stability of the phases may change with respect to the calculations within the harmonic approximation [9]. Many of the proposed structures for solid hydrogen have been investigated. Particularly, the Cmca-4 structure, which was found to be the stable one from 385-490 GPa [8], is metallic. Calculations for this structure, within the harmonic approximation for the ionic motion, predict a Tc up to 242 K at 450 GPa [10]. Nonetheless, due to the big ionic displacements, the harmonic approximation may not su ce to describe correctly the system. The aim of this work is to apply a recently developed method to treat anharmonicity, the stochastic self-consistent harmonic approximation (SSCHA) [11], to Cmca-4 metallic hydrogen. This way, we will be able to study the e ects of anharmonicity in the phonon spectrum and to try to understand the changes it may provoque in the value of Tc. The work is structured as follows. First we present the theoretical basis of the calculations: Density Functional Theory (DFT) for the electronic calculations, phonons in the harmonic approximation and the SSCHA. Then we apply these methods to Cmca-4 hydrogen and we discuss the results obtained. In the last chapter we draw some conclusions and propose possible future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The yield behaviour of two aluminum alloy foams (Alporas and Duocel) has been investigated for a range of axisymmetric compressive stress states. The initial yield surface has been measured, and the evolution of the yield surface has been explored for uniaxial and hydrostatic stress paths. It is found that the hydrostatic yield strength is of similar magnitude to the uniaxial yield strength. The yield surfaces are of quadratic shape in the stress space of mean stress versus effective stress, and evolve without corner formation. Two phenomenological isotropic constitutive models for the plastic behaviour are proposed. The first is based on a geometrically self-similar yield surface while the second is more complex and allows for a change in shape of the yield surface due to differential hardening along the hydrostatic and deviatoric axes. Good agreement is observed between the experimentally measured stress versus strain responses and the predictions of the models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the nanoscale periodic corrugation (NPC) structures on the dynamic fracture surface of a typical tough bulk metallic glass, submitted to high-velocity plate impact and scanned by atomic force microscopy (AFM). The detrended fluctuation analysis (DFA) of the recorded AFM profiles reveals that the valley landscapes of the NPC are nearly memoryless, characterized by Hurst parameter of 0.52 and exhibiting a self-similar fractal character with the dimension of about 1.48. Our findings confirm the existence of the “quasi-cleavage” fracture underpinned by tension transformation zones (TTZs) in metallic glasses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various metallized nanostructures (such as rings, wires with controllable lengths, spheres) have been successfully fabricated by coating metallic nanolayers onto soft nanotemplates through simple electroless methods. In particular, bimetallic nanostructures have been obtained by using simple methods. The multiple functional polymeric nanostructures, were obtained through the self-assembly of polystyrene/poly(4-vinyl pyridine) triblock copolymer (P4VP-b-PS-b-P4VP) in selective media by changing the common solvent properties. By combining field emission scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) characterization, it was confirmed that polymer/metal and bimetallic (Au@Ag) core-shell nanostructures could be achieved by chemical metal deposition method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial perspective-taking that involves imagined changes in one’s spatial orientation is facilitated by vestibular stimulation inducing a congruent sensation of self-motion. We examined further the role of vestibular resources in perspective-taking by evaluating whether aberrant and conflicting vestibular stimulation impaired perspective-taking performance. Participants (N = 39) undertook either an “own body transformation” (OBT)task, requiring speeded spatial judgments made from the perspective of a schematic figure, or a control task requiring reconfiguration of spatial mappings from one’s own visuo-spatial perspective. These tasks were performed both without and with vestibular stimulation by whole-body Coriolis motion, according to a repeated measures design, balanced for order. Vestibular stimulation was found to impair performance during the first minute post stimulus relative to the stationary condition. This disruption was task-specific, affecting only the OBT task and not the control task, and dissipated by the second minute post-stimulus. Our experiment thus demonstrates selective temporary impairment of perspective-taking from aberrant vestibular stimulation, implying that uncompromised vestibular resources are necessary for efficient perspective-taking. This finding provides evidence for an embodied mechanism for perspective-taking whereby vestibular input contributes to multisensory processing underlying bodily and social cognition. Ultimately, this knowledge may contribute to the design of interventions that help patients suffering sudden vertigo adapt to the cognitive difficulties caused by aberrant vestibular stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Step bunching develops in the epitaxy of SrRuO3 on vicinal SrTiO3(001) substrates. We have investigated the formation mechanisms and we show here that step bunching forms by lateral coalescence of wedgelike three-dimensional islands that are nucleated at substrate steps. After coalescence, wedgelike islands become wider and straighter with growth, forming a self-organized network of parallel step bunches with altitudes exceeding 30 unit cells, separated by atomically flat terraces. The formation mechanism of step bunching in SrRuO3, from nucleated islands, radically differs from one-dimensional models used to describe bunching in semiconducting materials. These results illustrate that growth phenomena of complex oxides can be dramatically different to those in semiconducting or metallic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The time evolution of the out-of-equilibrium Mott insulator is investigated numerically through calculations of space-time-resolved density and entropy profiles resulting from the release of a gas of ultracold fermionic atoms from an optical trap. For adiabatic, moderate and sudden switching-off of the trapping potential, the out-of-equilibrium dynamics of the Mott insulator is found to differ profoundly from that of the band insulator and the metallic phase, displaying a self-induced stability that is robust within a wide range of densities, system sizes and interaction strengths. The connection between the entanglement entropy and changes of phase, known for equilibrium situations, is found to extend to the out-of-equilibrium regime. Finally, the relation between the system`s long time behavior and the thermalization limit is analyzed. Copyright (C) EPLA, 2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJETIVO: analisar, por meio da morfometria digital, o espessamento intimal presente na artéria ilíaca de suínos, submetidos à angioplastia isoladamente e à angioplastia seguida do implante de stent. MATERIAIS E MÉTODOS: em dez suínos sadios, foi realizada a angioplastia de ambas as artérias ilíacas comuns (AIC) seguida do implante de um “Z” stent autoexpansível na AIC esquerda. Após quatro semanas, os animais foram sacrificados para a retirada de amostras de tecido arterial e preparo das lâminas histológicas de três grupos de peças de cada suíno divididas do seguinte modo: grupo 1, envolvendo o segmento arterial proximal do stent; grupo 2, envolvendo o segmento distal do stent; grupo 3, área da angioplastia da AIC direita. As imagens das lâminas foram digitalizadas e analisadas por programa de morfometria com cálculo da área luminal, área da camada íntima e área da camada média dos cortes histológicos. A análise estatística foi realizada através de média e desvio padrão das áreas em cada grupo, utilizando ANOVA, com teste Post-Hoc de Tukey e LSD. O valor de p≤0,05 foi considerado significativo. RESULTADOS: na análise das médias das áreas obtidas, foi encontrada uma diferença estatisticamente significativa quanto à camada íntima dos grupos 1 (5,41 mm²) e 2 (5,25 mm²), quando comparados ao grupo 3 (0,65 mm²), em relação à camada média dos grupos 1 (3,51 mm²) e 2 (3,70 mm²), quando comparados ao grupo 3 (5,59 mm²) e não se observou diferença significativa nas médias das áreas luminais dos três grupos (grupo 1: 6,63 mm²; grupo 2: 5,25 mm²; grupo 3: 5,78 mm²). CONCLUSÃO: a angioplastia da AIC do suíno, seguida do implante do stent, gerou um espessamento intimal maior do que aquele produzido apenas pela angioplastia; porém, a área da camada média apresentou-se diminuída nos grupos “angioplastia + stent”; a luz arterial não apresentou diferença entre estes grupos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrated bacterial cellulose (BC) membranes obtained from cultures of Acetobacter xylinum were used in the preparation of silver nanoparticles containing cellulose membranes. In situ preparation of Ag nanoparticles was achieved from the hydrolytic decomposition of silver triethanolamine (TEA) complexes. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns both lead to the observation of spherical metallic silver particles with mean diameter of 8 nm well adsorbed onto the BC fibriles. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present study was to evaluate in vivo the failure rate of metallic brackets bonded with two orthodontic composites. Nineteen patients with ages ranging from 10.5 to 38.7 years needing corrective orthodontic treatment were selected for study. The enamel surfaces from second premolars to second premolars were treated with Transbond Plus-Self Etching Primer (3M Unitek). Next, 380 orthodontic brackets were bonded on maxillary and mandibular teeth, as follows: 190 with Transbond XT composite (3M Unitek) (control) and 190 with Transbond Plus Color Change (3M Unitek) (experimental) in contralateral quadrants. The bonded brackets were light cured for 40 s, and initial alignment archwires were inserted. Bond failure rates were recorded over a six-month period. At the end of the evaluation, six bond failures occurred, three for each composite. Kaplan-Meyer method and log-rank test (Mantel-Cox) was used for statistical analysis, and no statistically significant difference was found between the materials (p=0.999). Both Transbond XT and Transbond Plus Color Change composites had low debonding rates over the study period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Green chemistry is an innovative way to approach the synthesis of metallic nanostructures employing eco-friendly substances (natural compounds) acting as reducing agents. Usually, slow kinetics are expected due to, use of microbiological materials. In this report we study composites of natural rubber (NR) membranes fabricated using latex from Hevea brasiliensis trees (RRIM 600) that works as reducing agent for the synthesis of gold nanoparticles. A straight and clean method is presented, to produce gold nanoparticles (AuNP) in a flexible substrate or in solution, without the use of chemical reducing reagents, and at the same time providing good size's homogeneity, reproducibility, and stability of the composites. Copyright © 2013 Flávio C. Cabrera et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present study was to evaluate in vivo the failure rate of metallic brackets bonded with two orthodontic composites. Nineteen patients with ages ranging from 10.5 to 38.7 years needing corrective orthodontic treatment were selected for study. The enamel surfaces from second premolars to second premolars were treated with Transbond Plus-Self Etching Primer (3M Unitek). Next, 380 orthodontic brackets were bonded on maxillary and mandibular teeth, as follows: 190 with Transbond XT composite (3M Unitek) (control) and 190 with Transbond Plus Color Change (3M Unitek) (experimental) in contralateral quadrants. The bonded brackets were light cured for 40 s, and initial alignment archwires were inserted. Bond failure rates were recorded over a six-month period. At the end of the evaluation, six bond failures occurred, three for each composite. Kaplan-Meyer method and log-rank test (Mantel-Cox) was used for statistical analysis, and no statistically significant difference was found between the materials (p=0.999). Both Transbond XT and Transbond Plus Color Change composites had low debonding rates over the study period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this study was to evaluate in vivo the bonding of metallic orthodontic brackets with different adhesive systems. MATERIAL AND METHODS: Twenty patients (10.5-15.1 years old) who had sought corrective orthodontic treatment at a University Orthodontic Clinic were evaluated. Brackets were bonded from the right second premolar to the left second premolar in the upper and lower arches using: Orthodontic Concise, conventional Transbond XT, Transbond XT without primer, and Transbond XT associated with Transbond Plus Self-etching Primer (TPSEP). The 4 adhesive systems were used in all patients using a split-mouth design; each adhesive system was used in one quadrant of each dental arch, so that each group of 5 patients received the same bonding sequence. Initial archwires were inserted 1 week after bracket bonding. The number of bracket failures for each adhesive system was quantified over a 6-month period. RESULTS: The number of debonded brackets was: 8- Orthodontic Concise, 2- conventional Transbond XT, 9- Transbond XT without primer, and 1- Transbond XT + TPSEP. By using the Kaplan-Meier methods, statistically significant differences were found between the materials (p=0.0198), and the Logrank test identified these differences. Conventional Transbond XT and Transbond XT + TPSEP adhesive systems were statistically superior to Orthodontic Concise and Transbond XT without primer (p<0.05). There was no statistically significant difference between the dental arches (upper and lower), between the dental arch sides (right and left), and among the quadrants. CONCLUSIONS: The largest number of bracket failures occurred with Orthodontic Concise and Transbond XT without primer systems and few bracket failures occurred with conventional Transbond XT and Transbond XT+TPSEP. More bracket failures were observed in the posterior region compared with the anterior region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We investigated nanocomposites produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. During the implantation, the excess of metal atom concentration above the solubility limit leads to nucleation and growth of metal nanoparticles, driven by the temperature and temperature gradients within the implanted sample including the beam-induced thermal characteristics. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), that can be estimated by computer simulation using the TRIDYN. This is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study suggests that the nanoparticles form a bidimentional array buried few nanometers below the substrate surface. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples showed the metallic nanoparticles formed in the insulating matrix. The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted. These experimental results were compared with a model based on percolation theory, in which electron transport through the composite is explained by conduction through a random resistor network formed by the metallic nanoparticles. Excellent agreement was found between the experimental results and the predictions of the theory. It was possible to conclude, in all cases, that the conductivity process is due only to percolation (when the conducting elements are in geometric contact) and that the contribution from tunneling conduction is negligible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic printed electronics is attracting an ever-growing interest in the last decades because of its impressive breakthroughs concerning the chemical design of π-conjugated materials and their processing. This has an impact on novel applications, such as flexible-large-area displays, low- cost printable circuits, plastic solar cells and lab-on-a-chip devices. The organic field-effect transistor (OFET) relies on a thin film of organic semiconductor that bridges source and drain electrodes. Since its first discovery in the 80s, intensive research activities were deployed in order to control the chemico-physical properties of these electronic devices and consequently their charge. Self-assembled monolayers (SAMs) are a versatile tool for tuning the properties of metallic, semi-conducting, and insulating surfaces. Within this context, OFETs represent reliable instruments for measuring the electrical properties of the SAMs in a Metal/SAM/OS junction. Our experimental approach, named Charge Injection Organic-Gauge (CIOG), uses OTFT in a charge-injection controlled regime. The CIOG sensitivity has been extensively demonstrated on different homologous self-assembling molecules that differ in either chain length or in anchor/terminal group. One of the latest applications of organic electronics is the so-called “bio-electronics” that makes use of electronic devices to encompass interests of the medical science, such as biosensors, biotransducers etc… As a result, thee second part of this thesis deals with the realization of an electronic transducer based on an Organic Field-Effect Transistor operating in aqueous media. Here, the conventional bottom gate/bottom contact configuration is replaced by top gate architecture with the electrolyte that ensures electrical contact between the top gold electrode and the semiconductor layer. This configuration is named Electrolyte-Gated Field-Effect Transistor (EGOFET). The functionalization of the top electrode is the sensing core of the device allowing the detection of dopamine as well as of protein biomarkers with ultra-low sensitivity.