993 resultados para SELECTIVE HYDROGENATION


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydrogenation of o-chloronitrobenzene (o-CNB) to o-chloroaniline (o-CAN) with Pd/C has been investigated in supercritical carbon dioxide (scCO(2)) at 308 K. The influences of several parameters such as CO2, H-2 pressures, Fd metal particle size and reaction time have been discussed. CO2 pressure presented markedly effects on the reaction rate and product selectivity under the reaction conditions used, the selectivity to o-CAN at CO2 pressure from 8 to 13 MPa (supercritical region) was larger than that at CO2 pressure below 6 MPa (subcritical region).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A catalyst of Rh nanoparticles supported on a carbon nanofiber, 5 wt.% Rh/CNF, with an average size of 2-3 nm has been prepared by a method of incipient wetness impregnation. The catalyst presented a high activity in the ring hydrogenation of phenol in a medium of supercritical CO2 (scCO(2)) at a low temperature of 323 K. The presence of compressed CO2 retards hydrogenation of cyclohexanone to cyclohexanol under the reaction conditions used, and this is beneficial for the formation of cyclohexanone, increasing the selectivity to cyclohexanone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The selective hydrogenation of cinnamaldehyde (CAL) was investigated using rice husk-based porous carbon (RHCs) supported platinum catalysts in supercritical carbon dioxide (SCCO2). The effects of surface chemistry treatment of the support and the reaction phase behavior have been examined. The Pt/H-RHCs (HNO3-pretreated) was more active for CAL hydrogenation compared with Pt/NH3 - RHCs (NH3 center dot H2O-pretreated). The Pt/RHCs catalyst exhibited a higher selectivity to cinnamyl alcohol (COL) compared with commercial catalyst of Pt/C, which is relative to the micro - mesoporosity structure of the RHCs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydrogenation of maleic anhydride (MAH) with Pd/C catalysts in supercritical carbon dioxide (scCO(2)) was investigated. The selectivity for gamma-butyrolactone (GBL) reached 97.3% in scCO(2) at 100% conversion of MAH, which was notably higher than that of 77.4% obtained in organic solvent of ethylene glycol dimethyl ether (EGDME). The particle size of Pd exhibited large influence on the reaction rate and selectivity of GBL. Higher selectivity of GBL was obtained with Pd/C catalyst of smaller Pd particle size, and the rate of GBL selectivity increase as a function of CO2 pressure was found to be significantly correlated with Pd particle size.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ag/SiO2 prepared by an in situ reduction method are found, for the first time, to be highly effective and recyclable catalysts for the selective hydrogenation of a range of chloronitrobenzes to their corresponding chloroanilines, which are of great potential as industrially viable and cheap novel catalysts for the production of chloroanilines.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Green oil, which leads to the deactivation of the catalysts used for the selective hydrogenation of acetylene, has long been observed but its formation mechanism is not fully understood. In this work, the formation of 1,3-butadiene, known to be the precursor of green oil, on both Pd(111) and Pd(211) surfaces is examined using density functional theory calculations. The pathways containing C-2 + C-2 coupling reactions as well as the corresponding hydrogenation reactions are studied in detail. Three pathways for 1,3-butadiene production, namely coupling plus hydrogenation and further hydrogenation, hydrogenation plus coupling plus hydrogenation, and a two step hydrogenation followed by coupling, are determined. By comparing the effective barriers, we identify the favored pathway on both surfaces. A general understanding toward the deactivation process of the industrial catalysts is also provided. In addition, the effects of the formation of subsurface carbon atoms as well as the Ag alloying on the 1,3-butadiene formation on Pd-based catalysts are also investigated and compared with experimental results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The selective hydrogenation of acetylene to ethylene on several Pd surfaces (Pd(111), Pd(100), Pd(211), and Pd(211)-defect) and Pd surfaces with subsurface species (carbon and hydrogen) as well as a number of Pd-based alloys (Pd-M/Pd(111) and Pd-M/Pd(211) (M = Cu, Ag and Au)) are investigated using density functional theory calculations to understand both the acetylene hydrogenation activity and the selectivity of ethylene formation. All the hydrogenation barriers are calculated, and the reaction rates on these surfaces are obtained using a two-step model. Pd(211) is found to have the highest activity for acetylene hydrogenation while Pd(100) gives rise to the lowest activity. In addition, more open surfaces result in over-hydrogenation to form ethane, while the close-packed surface (Pd(111)) is the most selective. However, we also find that the presence of subsurface carbon and hydrogen significantly changes the reactivity and selectivity of acetylene toward hydrogenation on Pd surfaces. On forming surface alloys of Pd with Cu, Ag and Au, the selectivity for ethylene is also found to be changed. A new energy decomposition method is used to quantitatively analyze the factors in determining the changes in selectivity. These surface modifiers are found to block low coordination unselective sites, leading to a decreased ethane production. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Horiuti-Polanyi mechanism has been considered to be universal for explaining the mechanisms of hydrogenation reactions in heterogeneous catalysis for several decades. In this work, we examine this mechanism for the hydrogenation of acrolein, the simplest alpha,beta-unsaturated aldehyde, in gold-based systems as well as some other metals using extensive first-principles calculations. It is found that a non-Horiuti-Polanyi mechanism is favored in some cases. Furthermore, the physical origin and trend of this mechanism are revealed and discussed regarding the geometrical and electronic effects, which will have a significant influence on current understandings on heterogeneous catalytic hydrogenation reactions and the future catalyst design for these reactions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Partial hydrogenation of acrolein, the simplest alpha, beta-unsaturated aldehyde, is not only a model system to understand the selectivity in heterogeneous catalysis, but also technologically an important reaction. In this work, the reaction on Pt(211) and Au(211) surfaces is thoroughly investigated using density functional theory calculations. The formation routes of three partial hydrogenation products, namely propenol, propanal and enol, on both metals are studied. It is found that the pathway to produce enol is kinetically favoured on Pt while on Au the route of forming propenol is preferred. Our calculations also show that the propanal formation follows an indirect pathway on Pt(211). An energy decomposition method to analyze the barrier is utilized to understand the selectivities at Pt(211) and Au(211), which reveals that the interaction energies between the reactants involved in the transition states play a key role in determining the selectivity difference.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The hydrogenation of 4-phenyl-2-butanone over Pt/TiO2 and Pt/SiO2 catalysts has been performed in a range of solvents and it has been observed that the solvent impacted on the selectivity of ketone and aromatic ring hydrogenation as well as the overall TOF of the titania catalyst with no solvent effect on selectivity observed using the silica supported catalyst where ring hydrogenation was favored. For the titania catalyst, alkanes were found to favor ring hydrogenation whereas aromatics and alcohols led to carbonyl hydrogenation. A two-site catalyst model is proposed whereby the aromatic ring hydrogenation occurs over the metal sites while carbonyl hydrogenation is thought to occur predominantly at interfacial sites, with oxygen vacancies in the titania support activating the carbonyl. The effect of the solvent on the hydrogenation reaction over the titania catalyst was related to competition for the active sites between solvent and 4-phenyl-2-butanone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The rate and, more importantly, selectivity (ketone vs aromatic ring) of the hydrogenation of 4-phenyl-2-butanone over a Pt/TiO2 catalyst have been shown to vary with solvent. In this study, a fundamental kinetic model for this multi-phase reaction has been developed incorporating statistical analysis methods to strengthen the foundations of mechanistically sound kinetic models. A 2-site model was determined to be most appropriate, describing aromatic hydrogenation (postulated to be over a platinum site) and ketone hydrogenation (postulated to be at the platinum–titania interface). Solvent choice has little impact on the ketone hydrogenation rate constant but strongly impacts aromatic hydrogenation due to solvent-catalyst interaction. Reaction selectivity is also correlated to a fitted product adsorption constant parameter. The kinetic analysis method shown has demonstrated the role of solvents in influencing reactant adsorption and reaction selectivity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In situ synthesis and testing of Ru and Pd nanoparticles as catalysts in the presence of ammonium perfluorohydrocarbo-carboxylate surfactant in supercritical carbon dioxide were carried out in a stainless steel batch reactor at 40 degrees C over a pressure range of 80-150 bar CO2/H-2. Direct Visualization of the formation of a supercritical phase at above 80 bar, followed by the formation of homogeneous microemulsions containing dispersed Ru nanoparticles and Pd nanoparticles in scCO(2) at above 95-100 bar, were conducted through a sapphire window reactor using a W-0 (molar water to surfactant ratio) of 30. The synthesised RU and Pd nanoparticles showed interesting product distributions in the selective hydrogenation of organic molecules, depending critically oil the density and polarity of the fluid (which ill turn depends on the pressure applied). Thus, selective hydrogenation of the citral molecule, which contains three reducible groups (aldehydes and double bonds at the 23 and 6,7 positions), is feasible Lis a chemical probe. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Platinum is one of the most widely used hydrogenation catalysts. Here we describe the translation of batch reactions to continuous flow, affording tunable C=O versus C=C hydrogenation over a Pt/SiO2 catalyst, resulting in high steady state activity and single-pass yields in the selective hydrogenation of cinnamaldehyde to cinnamyl alcohol under mild conditions. Negligible catalyst deactivation occurs under extended flow operation due to removal of reactively-formed poisons from the reaction zone. Process intensification imparts a four-fold enhancement in cinnamyl alcohol productivity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Acknowledgements We thank the University of Aberdeen for financial support and Dr K. McManus (University of Aberdeen) for performing preliminary experiments with these samples. Electron microscopy and EDS were performed by RTB at the Electron Microscopy Facility, University of St Andrews.