972 resultados para SECONDARY-ELECTRON EMISSION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a simple model for a component of the radiolytic production of any chemical species due to electron emission from irradiated nanoparticles (NPs) in a liquid environment, provided the expression for the G value for product formation is known and is reasonably well characterized by a linear dependence on beam energy. This model takes nanoparticle size, composition, density and a number of other readily available parameters (such as X-ray and electron attenuation data) as inputs and therefore allows for the ready determination of this contribution. Several approximations are used, thus this model provides an upper limit to the yield of chemical species due to electron emission, rather than a distinct value, and this upper limit is compared with experimental results. After the general model is developed we provide details of its application to the generation of HO(•) through irradiation of gold nanoparticles (AuNPs), a potentially important process in nanoparticle-based enhancement of radiotherapy. This model has been constructed with the intention of making it accessible to other researchers who wish to estimate chemical yields through this process, and is shown to be applicable to NPs of single elements and mixtures. The model can be applied without the need to develop additional skills (such as using a Monte Carlo toolkit), providing a fast and straightforward method of estimating chemical yields. A simple framework for determining the HO(•) yield for different NP sizes at constant NP concentration and initial photon energy is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A silver target kept under partial vacuum conditions was irradiated with focused nanosecond pulses at 1:06 mm from a Nd:YAG laser. The electron emission monitored with a Langmuir probe shows a clear twin-peak distribution. The first peak which is very sharp has only a small delay and it indicates prompt electron emission with energy as much as 60 5 eV. Also the prompt electron emission shows a temporal profile with a width that is same as that for the laser pulse whereas the second peak is broader, covers several microseconds, and represents the low-energy electrons (2 0:5 eV) associated with the laser-induced silver plasma as revealed by time-of-flight measurements. It has been found that prompt electrons ejected from the target collisionally excite and ionize ambient gas molecules. Clearly resolved rotational structure is observed in the emission spectra of ambient nitrogen molecules. Combined with time-resolved spectroscopy, the prompt electrons can be used as excitation sources for various collisional excitation–relaxation experiments. The electron density corresponding to the first peak is estimated to be of the order of 1017 cm?--3 and it is found that the density increases as a function of distance away from the target. Dependence of probe current on laser intensity shows plasma shielding at high laser intensities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser-induced plasma generated from a silver target under partial vacuum conditions using the fundamental output of nanosecond duration from a pulsed Nd:yttrium aluminum garnet laser is studied using a Langmuir probe. The time of flight measurements show a clear twin peak distribution in the temporal profile of electron emission. The first peak has almost the same duration as the laser pulse while the second lasts for several microseconds. The prompt electrons are energetic enough ('60 eV) to ionize the ambient gas molecules or atoms. The use of prompt electron pulses as sources for electron impact excitation is demonstrated by taking nitrogen, carbon dioxide, and argon as ambient gases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Boyadjian et al dental wash technique provides, in certain contexts, the only chance to analyze and quantify the use of plants by past populations and is therefore an important milestone for the reconstruction of paleodiet. With this paper we present recent investigations and results upon the influence of this method on teeth. A series of six teeth from a three thousand years old Brazilian shellmound (Jabuticabeira II) was examined before and after dental wash. The main focus was documenting the alteration of the surfaces and microstructures. The status of all teeth were documented using macrophotography, optical light microscopy, and atmospheric Secondary Electron Microscopy (aSEM) prior and after applying the dental wash technique. The comparison of pictures taken before and after dental wash showed the different degrees of variation and damage done to the teeth but, also, provided additional information about microstructures, which have not been visible before. Consequently we suggest that dental wash should only be carried out, if absolutely necessary, after dental pathology, dental morphology and microwear studies have been accomplished. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polymer surface degradation and/or modification evolution of Teflon FEP and Mylar C films caused by a low energy electron beam were analyzed using a new method that consists in measuring the second crossover energy shift in the electronic emission curve. Upon prolonged irradiation, the second crossover energy shifts irreversibly to lower values in Teflon FEP but to higher values in Mylar C, indicating distinct mechanisms of surface degradation for the two polymers. The method represents a relatively inexpensive way to monitor early stages of surface degradation since the secondary electron emission comes from a maximum depth below the geometric surface of 100 mn in insulators. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (Vs) and of the proportion of TEOS in the mixture (XT) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on Vs and XT are presented. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed investigation has been undertaken into a field-induced electron emission (FIEE) mechanism that occurs at microscopically localised `sites' on uncoated, dielectric-coated and composite-coated metallic cathodes. An optical imaging technique has been used to observe and characterize the spatial and temporal behaviour of the populations of emission sites on these cathodes under various experimental conditions, e.g. pulsed-fields, gas environment etc. This study has shown that, for applied fields of 20MVm^-1, thin dielectric (750AA) and composite metal-insulator (MI) overlayers result in a dramatic increase in the total number of emission sites (typically 30cm^-2), and hence emission current. The emission process has been further investigated by a complementary electron spectroscopy technique which has revealed that the localised emission sites on these cathodes display field-dependent spectral shifts and half-widths, i.e. indicative of a `non-metallic' emission mechanism. Details are also given of a comprehensive investigation into the effects of the residual gas environment on the FIEE process from uncoated Cu-cathodes. This latter study has revealed that the well-known Gas Conditioning process can be performed with a wide range of gas species (e.g. O_2, N_2 etc), and furthermore, the degree of conditioning is influenced by both a `Voltage' and `Temperature' effect. These experimental findings have been shown to be particularly important to the technology of high-voltage vacuum-insulation and cold-cathode electron sources. The FIEE mechanism has been interpreted in terms of a hot-electron process that is associated with `electroformed' conducting channels in MI, MIM and MIMI surface microstructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed investigation has been undertaken into the field induced electron emission (FIEE) mechanism that occurs at microscopically localised `sites' on uncoated and dielectric coated metallic electrodes. These processes have been investigated using two dedicated experimental systems that were developed for this study. The first is a novel combined photo/field emission microscope, which employs a UV source to stimulate photo-electrons from the sample surface in order to generate a topographical image. This system utilises an electrostatic lens column to provide identical optical properties under the different operating conditions required for purely topographical and combined photo/field imaging. The system has been demonstrated to have a resolution approaching 1m. Emission images have been obtained from carbon emission sites using this system to reveal that emission may occur from the edge triple junction or from the bulk of the carbon particle. An existing UHV electron spectrometer has been extensively rebuilt to incorporate a computer control and data acquisition system, improved sample handling and manipulation and a specimen heating stage. Details are given of a comprehensive study into the effects of sample heating on the emission process under conditions of both bulk and transient heating. Similar studies were also performed under conditions of both zero and high applied field. These show that the properties of emission sites are strongly temperature and field dependent thus indicating that the emission process is `non-metallic' in nature. The results have been shown to be consistent with an existing hot electron emission model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) have become one of the most interesting allotropes of carbon due to their intriguing mechanical, electrical, thermal and optical properties. The synthesis and electron emission properties of CNT arrays have been investigated in this work. Vertically aligned CNTs of different densities were synthesized on copper substrate with catalyst dots patterned by nanosphere lithography. The CNTs synthesized with catalyst dots patterned by spheres of 500 nm diameter exhibited the best electron emission properties with the lowest turn-on/threshold electric fields and the highest field enhancement factor. Furthermore, CNTs were treated with NH3 plasma for various durations and the optimum enhancement was obtained for a plasma treatment of 1.0 min. CNT point emitters were also synthesized on a flat-tip or a sharp-tip to understand the effect of emitter geometry on the electron emission. The experimental results show that electron emission can be enhanced by decreasing the screening effect of the electric field by neighboring CNTs. In another part of the dissertation, vertically aligned CNTs were synthesized on stainless steel (SS) substrates with and without chemical etching or catalyst deposition. The density and length of CNTs were determined by synthesis time. For a prolonged growth time, the catalyst activity terminated and the plasma started etching CNTs destructively. CNTs with uniform diameter and length were synthesized on SS substrates subjected to chemical etching for a period of 40 minutes before the growth. The direct contact of CNTs with stainless steel allowed for the better field emission performance of CNTs synthesized on pristine SS as compared to the CNTs synthesized on Ni/Cr coated SS. Finally, fabrication of large arrays of free-standing vertically aligned CNT/SnO2 core-shell structures was explored by using a simple wet-chemical route. The structure of the SnO2 nanoparticles was studied by X-ray diffraction and electron microscopy. Transmission electron microscopy reveals that a uniform layer of SnO2 is conformally coated on every tapered CNT. The strong adhesion of CNTs with SS guaranteed the formation of the core-shell structures of CNTs with SnO2 or other metal oxides, which are expected to have applications in chemical sensors and lithium ion batteries.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high performance Time-of-Flight detector has been designed and constructed for isochronous mass spectrometry at the experimental Cooler Storage Ring (CSRe) The detector has been successfully used in an experiment to measure the masses of the N approximate to Z approximate to 33 nuclides near the proton drip-line Of particular interest is the mass of As-65 A maximum detection efficiency of 70% and a time resolution of 118 +/- 8 Ps (FWHM) have been achieved in the experiment The dependence of detection efficiency and signal average pulse height (APH) on atomic number Z has been studied The potential of APH for Z identification has been discussed (C) 2010 Elsevier B V All rights reserved