685 resultados para S0 Galaxies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assembly history of massive galaxies is one of the most important aspects of galaxy formation and evolution. Although we have a broad idea of what physical processes govern the early phases of galaxy evolution, there are still many open questions. In this thesis I demonstrate the crucial role that spectroscopy can play in a physical understanding of galaxy evolution. I present deep near-infrared spectroscopy for a sample of high-redshift galaxies, from which I derive important physical properties and their evolution with cosmic time. I take advantage of the recent arrival of efficient near-infrared detectors to target the rest-frame optical spectra of z > 1 galaxies, from which many physical quantities can be derived. After illustrating the applications of near-infrared deep spectroscopy with a study of star-forming galaxies, I focus on the evolution of massive quiescent systems.

Most of this thesis is based on two samples collected at the W. M. Keck Observatory that represent a significant step forward in the spectroscopic study of z > 1 quiescent galaxies. All previous spectroscopic samples at this redshift were either limited to a few objects, or much shallower in terms of depth. Our first sample is composed of 56 quiescent galaxies at 1 < z < 1.6 collected using the upgraded red arm of the Low Resolution Imaging Spectrometer (LRIS). The second consists of 24 deep spectra of 1.5 < z < 2.5 quiescent objects observed with the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE). Together, these spectra span the critical epoch 1 < z < 2.5, where most of the red sequence is formed, and where the sizes of quiescent systems are observed to increase significantly.

We measure stellar velocity dispersions and dynamical masses for the largest number of z > 1 quiescent galaxies to date. By assuming that the velocity dispersion of a massive galaxy does not change throughout its lifetime, as suggested by theoretical studies, we match galaxies in the local universe with their high-redshift progenitors. This allows us to derive the physical growth in mass and size experienced by individual systems, which represents a substantial advance over photometric inferences based on the overall galaxy population. We find a significant physical growth among quiescent galaxies over 0 < z < 2.5 and, by comparing the slope of growth in the mass-size plane dlogRe/dlogM with the results of numerical simulations, we can constrain the physical process responsible for the evolution. Our results show that the slope of growth becomes steeper at higher redshifts, yet is broadly consistent with minor mergers being the main process by which individual objects evolve in mass and size.

By fitting stellar population models to the observed spectroscopy and photometry we derive reliable ages and other stellar population properties. We show that the addition of the spectroscopic data helps break the degeneracy between age and dust extinction, and yields significantly more robust results compared to fitting models to the photometry alone. We detect a clear relation between size and age, where larger galaxies are younger. Therefore, over time the average size of the quiescent population will increase because of the contribution of large galaxies recently arrived to the red sequence. This effect, called progenitor bias, is different from the physical size growth discussed above, but represents another contribution to the observed difference between the typical sizes of low- and high-redshift quiescent galaxies. By reconstructing the evolution of the red sequence starting at z ∼ 1.25 and using our stellar population histories to infer the past behavior to z ∼ 2, we demonstrate that progenitor bias accounts for only half of the observed growth of the population. The remaining size evolution must be due to physical growth of individual systems, in agreement with our dynamical study.

Finally, we use the stellar population properties to explore the earliest periods which led to the formation of massive quiescent galaxies. We find tentative evidence for two channels of star formation quenching, which suggests the existence of two independent physical mechanisms. We also detect a mass downsizing, where more massive galaxies form at higher redshift, and then evolve passively. By analyzing in depth the star formation history of the brightest object at z > 2 in our sample, we are able to put constraints on the quenching timescale and on the properties of its progenitor.

A consistent picture emerges from our analyses: massive galaxies form at very early epochs, are quenched on short timescales, and then evolve passively. The evolution is passive in the sense that no new stars are formed, but significant mass and size growth is achieved by accreting smaller, gas-poor systems. At the same time the population of quiescent galaxies grows in number due to the quenching of larger star-forming galaxies. This picture is in agreement with other observational studies, such as measurements of the merger rate and analyses of galaxy evolution at fixed number density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mergers and interacting galaxies are pivotal to the evolution of galaxies in the universe. They are the sites of prodigious star formation and key to understanding the starburst processes: the physical and chemical properties and the dynamics of the molecular gas. ULIRGs or Ultraluminous Infrared Galaxies are a result of many of these mergers. They host extreme starbursts, AGNs, and mergers. They are the perfect laboratory to probe the connection between starbursts, black hole accretion and mergers and to further our understanding of star formation and merging.

NGC 6240 and Arp 220 can be considered the founding members of this very active class of objects. They are in different stages of merging and hence are excellent case studies to further our understanding about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with CARMA C and B Configurations (2" and 0.5 - 0.8"). Multi-band imaging allows excitation analysis of HCN, HCO+, HNC, and CS along with CO transitions to constrain the properties of the gas. Our dataset is unique in that we have observed these lines at similar resolutions and high sensitivity which can be used to derive line ratios of faint high excitation lines.

Arp 220 has not had confirmed X-ray AGN detections for either nuclei. However, our observations indicate HCN/HNC ratios consistent with the chemistry of X-ray Dominated Regions (XDRs) -- a likely symptom of AGN. We calculated the molecular Hydrogen densities using each of the molecular species and conclude that assuming abundances of HNC and HCO+ similar to those in galactic sources are incorrect in the case of ULIRGs. The physical conditions in the dense molecular gas in ULIRGs alter these abundances. The derived H2 volume densities are ~ 5 x 104 cm-3 in both Arp 220 nuclei and ~ 104 cm-3 in NGC 6240.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galaxies are clusters of millions and billions of stars dynamically stable, with gas, dust and dark matter. They are the biggest isolated objects known in the Universe . Even though they are very complex systems, today we have a clear knowledge about their evolution and about their physical phenomena. Aside from the stellar component there is a gaseous component, principally neutral Hydrogen (HI), and dust that, although is not a significant component in terms of the mass, plays an important role on the absorption phenomena. Finally, cinematic and other kind of observations suggest the existence of a spheric dark matter halo, dominant in terms of mass and more extensive than the barionic component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ten detections and five tentative detections of hydrogen isocyanide (HNC) J=1-0 emission are reported from a survey including sixteen galaxies. Full maps are presented for the nuclear regions of NGC 253 and IC 342, partial maps for Maffei 2, M 82, and M 83. Toward IC 342, the HNC and HCO+ distributions differ from those observed in 12CO, 13CO, HCN, CS, and NH3. This is likely a consequence of the density structure. Relative HNC abundances are with 10(-10)-10(-9) much smaller than those measured in nearby dark clouds and appear to be slightly smaller than those in regions of massive star formation of the Galactic disk. This is consistent with the presence of dense warm gas or a frequent occurrence of shocks in the nuclear regions of the galaxies observed. As in prominent Galactic star forming regions, 3 mm HNC line emission tends to be weaker than the corresponding emission from HCN and HCO+. Toward Arp 220, however, the 3 mm HNC/HCN line intensity ratio is > 1. HNC/HCO+, HNC/CO, and HNC to 20 cm radio continuum luminosity ratios are also particularly large. A possible interpretation is the presence of cool quiescent gas outside the central region which contains the starburst. In the other ultraluminous galaxy observed, NGC 6240, X(HNC) 10 smaller than in Arp 220, demonstrating that the molecular composition in ultraluminous galaxies is far from being uniform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toward the starburst nucleus of NGC 253, C-12/C-13 line intensity ratios from six carbon bearing molecules (CO, CN, CS, HCN, HCO+, and HNC) are used to confine the possible range of carbon and oxygen isotope ratios. A detailed analysis yields C-12/C-13 approximately 40 and O-16/O-18 approximately 200. Also reported are first detections of (CS)-C-13 and of the 0(0) - 1(-1) E line of methanol (CH3OH) in an extragalactic source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. The aim of this paper is to discuss the nature of two type Ic supernovae SN 2007bg and SN 2007bi and their host galaxies. Both supernovae were discovered in wide-field, non-targeted surveys and are found to be associated with sub-luminous blue dwarf galaxies identified in SDSS images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the detailed spectral analysis of a sample of M33 B-type supergiant stars, aimed at the determination of their fundamental parameters and chemical composition. The analysis is based on a grid of non-LTE metal line-blanketed model atmospheres including the effects of stellar winds and spherical extension computed with the code FASTWIND. Surface abundance ratios of C, N, and O are used to discuss the chemical evolutionary status of each individual star. The comparison of observed stellar properties with theoretical predictions of massive star evolutionary models shows good agreement within the uncertainties of the analysis. The spatial distribution of the sample allows us to investigate the existence of radial abundance gradients in the disk of M33. The comparison of stellar and H II region O abundances ( based on direct determinations of the electron temperature of the nebulae) shows good agreement. Using a simple linear radial representation, the stellar oxygen abundances result in a gradient of -0.0145 +/- 0.005 dex arcmin(-1) (or -0.06 +/- 0.02 dex kpc(-1)) up to a distance equal to similar to 1.1 times the isophotal radius of the galaxy. A more complex representation cannot be completely discarded by our stellar sample. The stellar Mg and Si abundances follow the trend displayed by O abundances, although with shallower gradients. These differences in gradient slope cannot be explained at this point. The derived abundances of the three alpha-elements yield solar metallicity in the central regions of the disk of M33. A comparison with recent planetary nebula data from Magrini and coworkers indicates that the disk of M33 has not suffered from a significant O enrichment in the last 3 Gyr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the acceleration of particles by Alfven waves via the second-order Fermi process in the lobes of giant radio galaxies. Such sites are candidates for the accelerators of ultra-high-energy cosmic rays (UHECR). We focus on the nearby Fanaroff-Riley type I radio galaxy Centaurus A. This is motivated by the coincidence of its position with the arrival direction of several of the highest energy Auger events. The conditions necessary for consistency with the acceleration time-scales predicted by quasi-linear theory are reviewed. Test particle calculations are performed in fields which guarantee electric fields with no component parallel to the local magnetic field. The results of quasi-linear theory are, to an order of magnitude, found to be accurate at low turbulence levels for non-relativistic Alfven waves and at both low and high turbulence levels in the mildly relativistic case. We conclude that for pure stochastic acceleration via Alfven waves to be plausible as the generator of UHECR in Cen A, the baryon number density would need to be several orders of magnitude below currently held upper limits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pan-STARRS1 (PS1) survey has obtained imaging in five bands (grizyP1) over 10 Medium Deep Survey (MDS) fields covering a total of 70 square degrees. This paper describes the search for apparently hostless supernovae (SNe) within the first year of PS1 MDS data with an aim of discovering superluminous supernovae (SLSNe). A total of 249 hostless transients were discovered down to a limiting magnitude of MAB ∼ 23.5, of which 76 were classified as Type Ia supernovae (SNe Ia). There were 57 SNe with complete light curves that are likely core-collapse SNe (CCSNe) or type Ic SLSNe and 12 of these have had spectra taken. Of these 12 hostless, non-Type Ia SNe, 7 were SLSNe of type Ic at redshifts between 0.5 and 1.4. This illustrates that the discovery rate of type Ic SLSNe can be maximized by concentrating on hostless transients and removing normal SNe Ia. We present data for two possible SLSNe; PS1-10pm (z = 1.206) and PS1-10ahf (z = 1.1), and estimate the rate of type Ic SLSNe to be between 3+3−2×10−53+3−2×10−53+3−2×10−5 and 8+2−1×10−58+2−1×10−58+2−1×10−5 that of the CCSN rate within 0.3 ≤ z ≤ 1.4 by applying a Monte Carlo technique. The rate of slowly evolving, type Ic SLSNe (such as SN2007bi) is estimated as a factor of 10 lower than this range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present optical spectroscopy and optical/near-IR photometry of 31 host galaxies of hydrogen-poor superluminous supernovae (SLSNe), including 15 events from the Pan-STARRS1 Medium Deep Survey. Our sample spans the redshift range 0.1 ≲ z ≲ 1.6, and is the first comprehensive host galaxy study of this specific subclass of cosmic explosions. Combining the multi-band photometry and emission-line measurements, we determine the luminosities, stellar masses, star formation rates, and metallicities. We find that, as a whole, the hosts of SLSNe are a low-luminosity (〈MB 〉 ≈ -17.3 mag), low stellar mass (〈M〉 ≈ 2 × 108 M) population, with a high median specific star formation rate (〈sSFR〉 ≈ 2 Gyr-1). The median metallicity of our spectroscopic sample is low, 12 + log (O/H) ≈ 8.35 ≈ 0.45 Z, although at least one host galaxy has solar metallicity. The host galaxies of H-poor SLSNe are statistically distinct from the hosts of GOODS core-collapse SNe (which cover a similar redshift range), but resemble the host galaxies of long-duration gamma-ray bursts (LGRBs) in terms of stellar mass, SFR, sSFR, and metallicity. This result indicates that the environmental causes leading to massive stars forming either SLSNe or LGRBs are similar, and in particular that SLSNe are more effectively formed in low metallicity environments. We speculate that the key ingredient is large core angular momentum, leading to a rapidly spinning magnetar in SLSNe and an accreting black hole in LGRBs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present optical and infrared monitoring data of SN 2012hn collectedby the Public European Southern Observatory Spectroscopic Survey forTransient Objects. We show that SN 2012hn has a faint peak magnitude(MR ˜ -15.65) and shows no hydrogen and no clearevidence for helium in its spectral evolution. Instead, we detectprominent Ca II lines at all epochs, which relates this transient topreviously described `Ca-rich' or `gap' transients. However, thephotospheric spectra (from -3 to +32 d with respect to peak) of SN2012hn show a series of absorption lines which are unique and a redcontinuum that is likely intrinsic rather than due to extinction. Linesof Ti II and Cr II are visible. This may be a temperature effect, whichcould also explain the red photospheric colour. A nebular spectrum at+150 d shows prominent Ca II, O I, C I and possibly Mg I lines whichappear similar in strength to those displayed by core-collapsesupernovae (SNe). To add to the puzzle, SN 2012hn is located at aprojected distance of 6 kpc from an E/S0 host and is not close to anyobvious star-forming region. Overall SN 2012hn resembles a group offaint H-poor SNe that have been discovered recently and for which aconvincing and consistent physical explanation is still missing. Theyall appear to explode preferentially in remote locations offset from amassive host galaxy with deep limits on any dwarf host galaxies,favouring old progenitor systems. SN 2012hn adds heterogeneity to thissample of objects. We discuss potential explosion channels includingHe-shell detonations and double detonations of white dwarfs as well aspeculiar core-collapse SNe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the results of our search for the progenitor candidate of SN 2013dk, a Type Ic supernova (SN) that exploded in the Antennae galaxy system. We compare pre-explosion Hubble Space Telescope (HST) archival images with SN images obtained using adaptive optics at the ESO Very Large Telescope. We isolate the SN position to within 3σ uncertainty radius of 0.02 arcsec and show that there is no detectable point source in any of the HST filter images within the error circle. We set an upper limit to the absolute magnitude of the progenitor to be MF555W ≳ -5.7, which does not allow Wolf-Rayet (WR) star progenitors to be ruled out. A bright source appears 0.17 arcsec away, which is either a single bright supergiant or compact cluster, given its absolute magnitude of MF555W = -9.02 ± 0.28 extended wings and complex environment. However, even if this is a cluster, the spatial displacement of SN 2013dk means that its membership is not assured. The strongest statement that we can make is that in the immediate environment of SN 2013dk (within 10 pc or so), we find no clear evidence of either a point source coincident with the SN or a young stellar cluster that could host a massive WR progenitor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the Pan-STARRS1 discovery and light curves, and follow-up MMT and Gemini spectroscopy of an ultraluminous supernova (ULSN; dubbed PS1-11bam) at a redshift of z = 1.566 with a peak brightness of M UV ≈ -22.3 mag. PS1-11bam is one of the highest redshift spectroscopically confirmed SNe known to date. The spectrum exhibits broad absorption features typical of previous ULSNe (e.g., C II, Si III), and strong and narrow Mg II and Fe II absorption lines from the interstellar medium (ISM) of the host galaxy, confirmed by an [O II]λ3727 emission line at the same redshift. The equivalent widths of the Fe II λ2600 and Mg II λ2803 lines are in the top quartile of the quasar intervening absorption system distribution, but are weaker than those of gamma-ray burst intrinsic absorbers (i.e., GRB host galaxies). We also detect the host galaxy in pre-explosion Pan-STARRS1 data and find that its UV spectral energy distribution is best fit with a young stellar population age of τ* ≈ 15-45 Myr and a stellar mass of M * ≈ (1.1-2.6) × 109 M ⊙ (for Z = 0.05-1 Z ⊙). The star formation rate inferred from the UV continuum and [O II]λ3727 emission line is ≈10 M ⊙ yr-1, higher than in previous ULSN hosts. PS1-11bam provides the first direct demonstration that ULSNe can serve as probes of the ISM in distant galaxies. The depth and red sensitivity of PS1 are uniquely suited to finding such events at cosmologically interesting redshifts (z ~ 1-2); the future combination of LSST and 30 m class telescopes promises to extend this technique to z ~ 4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate and analyze Feshbach resonance spectra for ultracold Yb(1S0)+Yb(3P2) collisions as a function of an interatomic potential scaling factor λ and external magnetic field. We show that, at zero field, the resonances are distributed randomly in λ, but that signatures of quantum chaos emerge as a field is applied. The random zero-field distribution arises from superposition of structured spectra associated with individual total angular momenta. In addition, we show that the resonances with respect to magnetic field in the experimentally accessible range of 400 to 2000 G are chaotically distributed, with strong level repulsion that is characteristic of quantum chaos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un nouveau contrôleur de EMCCD (Electron multiplying Charge Coupled Device) est présenté. Il permet de diminuer significativement le bruit qui domine lorsque la puce EMCCD est utilisé pour du comptage de photons: le bruit d'injection de charge. À l'aide de ce contrôleur, une caméra EMCCD scientifique a été construite, caractérisée en laboratoire et testée à l'observatoire du mont Mégantic. Cette nouvelle caméra permet, entre autres, de réaliser des observations de la cinématique des galaxies par spectroscopie de champ intégral par interférométrie de Fabry-Perot en lumière Ha beaucoup plus rapidement, ou de galaxies de plus faible luminosité, que les caméras à comptage de photon basées sur des tubes amplificateurs. Le temps d'intégration nécessaire à l'obtention d'un rapport signal sur bruit donné est environ 4 fois moindre qu'avec les anciennes caméras. Les applications d'un tel appareil d'imagerie sont nombreuses: photométrie rapide et faible flux, spectroscopie à haute résolution spectrale et temporelle, imagerie limitée par la diffraction à partir de télescopes terrestres (lucky imaging), etc. D'un point de vue technique, la caméra est dominée par le bruit de Poisson pour les flux lumineux supérieurs à 0.002 photon/pixel/image. D'un autre côté, la raie d'hydrogène neutre (HI) à 21 cm a souvent été utilisée pour étudier la cinématique des galaxies. L'hydrogène neutre a l'avantage de se retrouver en quantité détectable au-delà du disque optique des galaxies. Cependant, la résolution spatiale de ces observations est moindre que leurs équivalents réalisés en lumière visible. Lors de la comparaison des données HI, avec des données à plus haute résolution, certaines différences étaient simplement attribuées à la faible résolution des observations HI. Le projet THINGS (The HI Nearby Galaxy Survey a observé plusieurs galaxies de l'échantillon SINGS (Spitzer Infrared Nearby Galaxies Survey). Les données cinématiques du projet THIGNS seront comparées aux données cinématiques obtenues en lumière Ha, afin de déterminer si la seule différence de résolution spatiale peut expliquer les différences observées. Les résultats montrent que des différences intrinsèques aux traceurs utilisées (hydrogène neutre ou ionisé), sont responsables de dissemblances importantes. La compréhension de ces particularités est importante: la distribution de la matière sombre, dérivée de la rotation des galaxies, est un test de certains modèles cosmologiques.