931 resultados para Rule-based techniques
Resumo:
In the last decade, with the expansion of organizational scope and the tendency for outsourcing, there has been an increasing need for Business Process Integration (BPI), understood as the sharing of data and applications among business processes. The research efforts and development paths in BPI pursued by many academic groups and system vendors, targeting heterogeneous system integration, continue to face several conceptual and technological challenges. This article begins with a brief review of major approaches and emerging standards to address BPI. Further, we introduce a rule-driven messaging approach to BPI, which is based on the harmonization of messages in order to compose a new, often cross-organizational process. We will then introduce the design of a temporal first order language (Harmonized Messaging Calculus) that provides the formal foundation for general rules governing the business process execution. Definitions of the language terms, formulae, safety, and expressiveness are introduced and considered in detail.
Resumo:
Pac-Man is a well-known, real-time computer game that provides an interesting platform for research. We describe an initial approach to developing an artificial agent that replaces the human to play a simplified version of Pac-Man. The agent is specified as a simple finite state machine and ruleset. with parameters that control the probability of movement by the agent given the constraints of the maze at some instant of time. In contrast to previous approaches, the agent represents a dynamic strategy for playing Pac-Man, rather than a pre-programmed maze-solving method. The agent adaptively "learns" through the application of population-based incremental learning (PBIL) to adjust the agents' parameters. Experimental results are presented that give insight into some of the complexities of the game, as well as highlighting the limitations and difficulties of the representation of the agent.
Resumo:
In this chapter we present the relevant mathematical background to address two well defined signal and image processing problems. Namely, the problem of structured noise filtering and the problem of interpolation of missing data. The former is addressed by recourse to oblique projection based techniques whilst the latter, which can be considered equivalent to impulsive noise filtering, is tackled by appropriate interpolation methods.
Resumo:
The paper suggests a classification of dynamic rule-based systems. For each class of systems, limit behavior is studied. Systems with stabilizing limit states or stabilizing limit trajectories are identified, and such states and trajectories are found. The structure of the set of limit states and trajectories is investigated.
Resumo:
* This paper was made according to the program № 14 of fundamental scientific research of the Presidium of the Russian Academy of Sciences, the project 06-I-П14-052
Resumo:
Most research in the area of emotion detection in written text focused on detecting explicit expressions of emotions in text. In this paper, we present a rule-based pipeline approach for detecting implicit emotions in written text without emotion-bearing words based on the OCC Model. We have evaluated our approach on three different datasets with five emotion categories. Our results show that the proposed approach outperforms the lexicon matching method consistently across all the three datasets by a large margin of 17–30% in F-measure and gives competitive performance compared to a supervised classifier. In particular, when dealing with formal text which follows grammatical rules strictly, our approach gives an average F-measure of 82.7% on “Happy”, “Angry-Disgust” and “Sad”, even outperforming the supervised baseline by nearly 17% in F-measure. Our preliminary results show the feasibility of the approach for the task of implicit emotion detection in written text.
Resumo:
A költségvetési pénzügyek irodalmában a fenntarthatóság koncepciója csak az elmúlt két-három évtizedben került újra a vizsgálódás fókuszába. Ennek oka kettős. Az 1960-as évek végéig a fegyelmezett fiskális politikai gyakorlat nem igényelte annak állandó napirenden tartását. Csak az olajválságok idejére eső és azután állandósulni látszó költségvetési hiányok és a növekvő államadósság-állományok, illetve az ezek okán erősödő adósságkockázat irányította újra a figyelmet a költségvetési fegyelem fenntartásának fontosságára. Ezt a változást a közgazdaságtudományi elmélettörténetben beállott gyökeres változás kísérte. Az aktív keresletmenedzsment bírálataként megfogalmazódó monetarista kritika, illetve annak radikálisabb újklasszikus változata, a politikai döntéshozókról (és így a diszkrecionális költségvetési politika hatásosságáról) lesújtó véleményt fogalmazott meg, ami azután az aktív intézkedések korlátozásának irányába terelte a gazdaságpolitika alakítóit is. A következőkben e kettős – a fiskális politikai gyakorlat és a közgazdasági elméletek területén bekövetkezett –fordulat bemutatására vállalkozunk az Akadémiai Kiadónál megjelenő Költségvetési pénzügyek – Hiány, államadósság, fenntarthatóság című kötetünk bizonyos részeinek felhasználásával.
Resumo:
Conceptual database design is an unusually difficult and error-prone task for novice designers. This study examined how two training approaches---rule-based and pattern-based---might improve performance on database design tasks. A rule-based approach prescribes a sequence of rules for modeling conceptual constructs, and the action to be taken at various stages while developing a conceptual model. A pattern-based approach presents data modeling structures that occur frequently in practice, and prescribes guidelines on how to recognize and use these structures. This study describes the conceptual framework, experimental design, and results of a laboratory experiment that employed novice designers to compare the effectiveness of the two training approaches (between-subjects) at three levels of task complexity (within subjects). Results indicate an interaction effect between treatment and task complexity. The rule-based approach was significantly better in the low-complexity and the high-complexity cases; there was no statistical difference in the medium-complexity case. Designer performance fell significantly as complexity increased. Overall, though the rule-based approach was not significantly superior to the pattern-based approach in all instances, it out-performed the pattern-based approach at two out of three complexity levels. The primary contributions of the study are (1) the operationalization of the complexity construct to a degree not addressed in previous studies; (2) the development of a pattern-based instructional approach to database design; and (3) the finding that the effectiveness of a particular training approach may depend on the complexity of the task.
Resumo:
Spectral CT using a photon counting x-ray detector (PCXD) shows great potential for measuring material composition based on energy dependent x-ray attenuation. Spectral CT is especially suited for imaging with K-edge contrast agents to address the otherwise limited contrast in soft tissues. We have developed a micro-CT system based on a PCXD. This system enables full spectrum CT in which the energy thresholds of the PCXD are swept to sample the full energy spectrum for each detector element and projection angle. Measurements provided by the PCXD, however, are distorted due to undesirable physical eects in the detector and are very noisy due to photon starvation. In this work, we proposed two methods based on machine learning to address the spectral distortion issue and to improve the material decomposition. This rst approach is to model distortions using an articial neural network (ANN) and compensate for the distortion in a statistical reconstruction. The second approach is to directly correct for the distortion in the projections. Both technique can be done as a calibration process where the neural network can be trained using 3D printed phantoms data to learn the distortion model or the correction model of the spectral distortion. This replaces the need for synchrotron measurements required in conventional technique to derive the distortion model parametrically which could be costly and time consuming. The results demonstrate experimental feasibility and potential advantages of ANN-based distortion modeling and correction for more accurate K-edge imaging with a PCXD. Given the computational eciency with which the ANN can be applied to projection data, the proposed scheme can be readily integrated into existing CT reconstruction pipelines.
Resumo:
Syntactic logics do not suffer from the problems of logical omniscience but are often thought to lack interesting properties relating to epistemic notions. By focusing on the case of rule-based agents, I develop a framework for modelling resource-bounded agents and show that the resulting models have a number of interesting properties.
An Estimation of Distribution Algorithm with Intelligent Local Search for Rule-based Nurse Rostering
Resumo:
This paper proposes a new memetic evolutionary algorithm to achieve explicit learning in rule-based nurse rostering, which involves applying a set of heuristic rules for each nurse's assignment. The main framework of the algorithm is an estimation of distribution algorithm, in which an ant-miner methodology improves the individual solutions produced in each generation. Unlike our previous work (where learning is implicit), the learning in the memetic estimation of distribution algorithm is explicit, i.e. we are able to identify building blocks directly. The overall approach learns by building a probabilistic model, i.e. an estimation of the probability distribution of individual nurse-rule pairs that are used to construct schedules. The local search processor (i.e. the ant-miner) reinforces nurse-rule pairs that receive higher rewards. A challenging real world nurse rostering problem is used as the test problem. Computational results show that the proposed approach outperforms most existing approaches. It is suggested that the learning methodologies suggested in this paper may be applied to other scheduling problems where schedules are built systematically according to specific rules.
An Estimation of Distribution Algorithm with Intelligent Local Search for Rule-based Nurse Rostering
Resumo:
This paper proposes a new memetic evolutionary algorithm to achieve explicit learning in rule-based nurse rostering, which involves applying a set of heuristic rules for each nurse's assignment. The main framework of the algorithm is an estimation of distribution algorithm, in which an ant-miner methodology improves the individual solutions produced in each generation. Unlike our previous work (where learning is implicit), the learning in the memetic estimation of distribution algorithm is explicit, i.e. we are able to identify building blocks directly. The overall approach learns by building a probabilistic model, i.e. an estimation of the probability distribution of individual nurse-rule pairs that are used to construct schedules. The local search processor (i.e. the ant-miner) reinforces nurse-rule pairs that receive higher rewards. A challenging real world nurse rostering problem is used as the test problem. Computational results show that the proposed approach outperforms most existing approaches. It is suggested that the learning methodologies suggested in this paper may be applied to other scheduling problems where schedules are built systematically according to specific rules.