940 resultados para Rule-based


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recently, the development of industrial processes brought on the outbreak of technologically complex systems. This development generated the necessity of research relative to the mathematical techniques that have the capacity to deal with project complexities and validation. Fuzzy models have been receiving particular attention in the area of nonlinear systems identification and analysis due to it is capacity to approximate nonlinear behavior and deal with uncertainty. A fuzzy rule-based model suitable for the approximation of many systems and functions is the Takagi-Sugeno (TS) fuzzy model. IS fuzzy models are nonlinear systems described by a set of if then rules which gives local linear representations of an underlying system. Such models can approximate a wide class of nonlinear systems. In this paper a performance analysis of a system based on IS fuzzy inference system for the calibration of electronic compass devices is considered. The contribution of the evaluated IS fuzzy inference system is to reduce the error obtained in data acquisition from a digital electronic compass. For the reliable operation of the TS fuzzy inference system, adequate error measurements must be taken. The error noise must be filtered before the application of the IS fuzzy inference system. The proposed method demonstrated an effectiveness of 57% at reducing the total error based on considered tests. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The paper deals with a bilateral accident situation in which victims haveheterogeneous costs of care. With perfect information,efficient care bythe injurer raises with the victim's cost. When the injurer cannot observeat all the victim's type, and this fact can be verified by Courts, first-bestcannot be implemented with the use of a negligence rule based on thefirst-best levels of care. Second-best leads the injurer to intermediate care,and the two types of victims to choose the best response to it. This second-bestsolution can be easily implemented by a negligence rule with second-best as duecare. We explore imperfect observation of the victim's type, characterizing theoptimal solution and examining the different legal alternatives when Courts cannotverify the injurers' statements. Counterintuitively, we show that there is nodifference at all between the use by Courts of a rule of complete trust and arule of complete distrust towards the injurers' statements. We then relate thefindings of the model to existing rules and doctrines in Common Law and Civil Lawlegal systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Interactions between stimuli's acoustic features and experience-based internal models of the environment enable listeners to compensate for the disruptions in auditory streams that are regularly encountered in noisy environments. However, whether auditory gaps are filled in predictively or restored a posteriori remains unclear. The current lack of positive statistical evidence that internal models can actually shape brain activity as would real sounds precludes accepting predictive accounts of filling-in phenomenon. We investigated the neurophysiological effects of internal models by testing whether single-trial electrophysiological responses to omitted sounds in a rule-based sequence of tones with varying pitch could be decoded from the responses to real sounds and by analyzing the ERPs to the omissions with data-driven electrical neuroimaging methods. The decoding of the brain responses to different expected, but omitted, tones in both passive and active listening conditions was above chance based on the responses to the real sound in active listening conditions. Topographic ERP analyses and electrical source estimations revealed that, in the absence of any stimulation, experience-based internal models elicit an electrophysiological activity different from noise and that the temporal dynamics of this activity depend on attention. We further found that the expected change in pitch direction of omitted tones modulated the activity of left posterior temporal areas 140-200 msec after the onset of omissions. Collectively, our results indicate that, even in the absence of any stimulation, internal models modulate brain activity as do real sounds, indicating that auditory filling in can be accounted for by predictive activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Language acquisition is a complex process that requires the synergic involvement of different cognitive functions, which include extracting and storing the words of the language and their embedded rules for progressive acquisition of grammatical information. As has been shown in other fields that study learning processes, synchronization mechanisms between neuronal assemblies might have a key role during language learning. In particular, studying these dynamics may help uncover whether different oscillatory patterns sustain more item-based learning of words and rule-based learning from speech input. Therefore, we tracked the modulation of oscillatory neural activity during the initial exposure to an artificial language, which contained embedded rules. We analyzed both spectral power variations, as a measure of local neuronal ensemble synchronization, as well as phase coherence patterns, as an index of the long-range coordination of these local groups of neurons. Synchronized activity in the gamma band (2040 Hz), previously reported to be related to the engagement of selective attention, showed a clear dissociation of local power and phase coherence between distant regions. In this frequency range, local synchrony characterized the subjects who were focused on word identification and was accompanied by increased coherence in the theta band (48 Hz). Only those subjects who were able to learn the embedded rules showed increased gamma band phase coherence between frontal, temporal, and parietal regions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the field of molecular biology, scientists adopted for decades a reductionist perspective in their inquiries, being predominantly concerned with the intricate mechanistic details of subcellular regulatory systems. However, integrative thinking was still applied at a smaller scale in molecular biology to understand the underlying processes of cellular behaviour for at least half a century. It was not until the genomic revolution at the end of the previous century that we required model building to account for systemic properties of cellular activity. Our system-level understanding of cellular function is to this day hindered by drastic limitations in our capability of predicting cellular behaviour to reflect system dynamics and system structures. To this end, systems biology aims for a system-level understanding of functional intraand inter-cellular activity. Modern biology brings about a high volume of data, whose comprehension we cannot even aim for in the absence of computational support. Computational modelling, hence, bridges modern biology to computer science, enabling a number of assets, which prove to be invaluable in the analysis of complex biological systems, such as: a rigorous characterization of the system structure, simulation techniques, perturbations analysis, etc. Computational biomodels augmented in size considerably in the past years, major contributions being made towards the simulation and analysis of large-scale models, starting with signalling pathways and culminating with whole-cell models, tissue-level models, organ models and full-scale patient models. The simulation and analysis of models of such complexity very often requires, in fact, the integration of various sub-models, entwined at different levels of resolution and whose organization spans over several levels of hierarchy. This thesis revolves around the concept of quantitative model refinement in relation to the process of model building in computational systems biology. The thesis proposes a sound computational framework for the stepwise augmentation of a biomodel. One starts with an abstract, high-level representation of a biological phenomenon, which is materialised into an initial model that is validated against a set of existing data. Consequently, the model is refined to include more details regarding its species and/or reactions. The framework is employed in the development of two models, one for the heat shock response in eukaryotes and the second for the ErbB signalling pathway. The thesis spans over several formalisms used in computational systems biology, inherently quantitative: reaction-network models, rule-based models and Petri net models, as well as a recent formalism intrinsically qualitative: reaction systems. The choice of modelling formalism is, however, determined by the nature of the question the modeler aims to answer. Quantitative model refinement turns out to be not only essential in the model development cycle, but also beneficial for the compilation of large-scale models, whose development requires the integration of several sub-models across various levels of resolution and underlying formal representations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The energy consumption of IT equipments is becoming an issue of increasing importance. In particular, network equipments such as routers and switches are major contributors to the energy consumption of internet. Therefore it is important to understand how the relationship between input parameters such as bandwidth, number of active ports, traffic-load, hibernation-mode and their impact on energy consumption of a switch. In this paper, the energy consumption of a switch is analyzed in extensive experiments. A fuzzy rule-based model of energy consumption of a switch is proposed based on the result of experiments. The model can be used to predict the energy saving when deploying new switches by controlling the parameters to achieve desired energy consumption and subsequent performance. Furthermore, the model can also be used for further researches on energy saving techniques such as energy-efficient routing protocol, dynamic link shutdown, etc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This is a Named Entity Based Question Answering System for Malayalam Language. Although a vast amount of information is available today in digital form, no effective information access mechanism exists to provide humans with convenient information access. Information Retrieval and Question Answering systems are the two mechanisms available now for information access. Information systems typically return a long list of documents in response to a user’s query which are to be skimmed by the user to determine whether they contain an answer. But a Question Answering System allows the user to state his/her information need as a natural language question and receives most appropriate answer in a word or a sentence or a paragraph. This system is based on Named Entity Tagging and Question Classification. Document tagging extracts useful information from the documents which will be used in finding the answer to the question. Question Classification extracts useful information from the question to determine the type of the question and the way in which the question is to be answered. Various Machine Learning methods are used to tag the documents. Rule-Based Approach is used for Question Classification. Malayalam belongs to the Dravidian family of languages and is one of the four major languages of this family. It is one of the 22 Scheduled Languages of India with official language status in the state of Kerala. It is spoken by 40 million people. Malayalam is a morphologically rich agglutinative language and relatively of free word order. Also Malayalam has a productive morphology that allows the creation of complex words which are often highly ambiguous. Document tagging tools such as Parts-of-Speech Tagger, Phrase Chunker, Named Entity Tagger, and Compound Word Splitter are developed as a part of this research work. No such tools were available for Malayalam language. Finite State Transducer, High Order Conditional Random Field, Artificial Immunity System Principles, and Support Vector Machines are the techniques used for the design of these document preprocessing tools. This research work describes how the Named Entity is used to represent the documents. Single sentence questions are used to test the system. Overall Precision and Recall obtained are 88.5% and 85.9% respectively. This work can be extended in several directions. The coverage of non-factoid questions can be increased and also it can be extended to include open domain applications. Reference Resolution and Word Sense Disambiguation techniques are suggested as the future enhancements

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis summarizes the results on the studies on a syntax based approach for translation between Malayalam, one of Dravidian languages and English and also on the development of the major modules in building a prototype machine translation system from Malayalam to English. The development of the system is a pioneering effort in Malayalam language unattempted by previous researchers. The computational models chosen for the system is first of its kind for Malayalam language. An in depth study has been carried out in the design of the computational models and data structures needed for different modules: morphological analyzer , a parser, a syntactic structure transfer module and target language sentence generator required for the prototype system. The generation of list of part of speech tags, chunk tags and the hierarchical dependencies among the chunks required for the translation process also has been done. In the development process, the major goals are: (a) accuracy of translation (b) speed and (c) space. Accuracy-wise, smart tools for handling transfer grammar and translation standards including equivalent words, expressions, phrases and styles in the target language are to be developed. The grammar should be optimized with a view to obtaining a single correct parse and hence a single translated output. Speed-wise, innovative use of corpus analysis, efficient parsing algorithm, design of efficient Data Structure and run-time frequency-based rearrangement of the grammar which substantially reduces the parsing and generation time are required. The space requirement also has to be minimised

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During the past few years, there has been much discussion of a shift from rule-based systems to principle-based systems for natural language processing. This paper outlines the major computational advantages of principle-based parsing, its differences from the usual rule-based approach, and surveys several existing principle-based parsing systems used for handling languages as diverse as Warlpiri, English, and Spanish, as well as language translation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Free-word order languages have long posed significant problems for standard parsing algorithms. This thesis presents an implemented parser, based on Government-Binding (GB) theory, for a particular free-word order language, Warlpiri, an aboriginal language of central Australia. The words in a sentence of a free-word order language may swap about relatively freely with little effect on meaning: the permutations of a sentence mean essentially the same thing. It is assumed that this similarity in meaning is directly reflected in the syntax. The parser presented here properly processes free word order because it assigns the same syntactic structure to the permutations of a single sentence. The parser also handles fixed word order, as well as other phenomena. On the view presented here, there is no such thing as a "configurational" or "non-configurational" language. Rather, there is a spectrum of languages that are more or less ordered. The operation of this parsing system is quite different in character from that of more traditional rule-based parsing systems, e.g., context-free parsers. In this system, parsing is carried out via the construction of two different structures, one encoding precedence information and one encoding hierarchical information. This bipartite representation is the key to handling both free- and fixed-order phenomena. This thesis first presents an overview of the portion of Warlpiri that can be parsed. Following this is a description of the linguistic theory on which the parser is based. The chapter after that describes the representations and algorithms of the parser. In conclusion, the parser is compared to related work. The appendix contains a substantial list of test cases ??th grammatical and ungrammatical ??at the parser has actually processed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm