984 resultados para Robot-assisted algorithm
Resumo:
In this paper, we propose a new on-line learning algorithm for the non-linear system identification: the swarm intelligence aided multi-innovation recursive least squares (SI-MRLS) algorithm. The SI-MRLS algorithm applies the particle swarm optimization (PSO) to construct a flexible radial basis function (RBF) model so that both the model structure and output weights can be adapted. By replacing an insignificant RBF node with a new one based on the increment of error variance criterion at every iteration, the model remains at a limited size. The multi-innovation RLS algorithm is used to update the RBF output weights which are known to have better accuracy than the classic RLS. The proposed method can produces a parsimonious model with good performance. Simulation result are also shown to verify the SI-MRLS algorithm.
Resumo:
Multisensor data fusion is a technique that combines the readings of multiple sensors to detect some phenomenon. Data fusion applications are numerous and they can be used in smart buildings, environment monitoring, industry and defense applications. The main goal of multisensor data fusion is to minimize false alarms and maximize the probability of detection based on the detection of multiple sensors. In this paper a local data fusion algorithm based on luminosity, temperature and flame for fire detection is presented. The data fusion approach was embedded in a low cost mobile robot. The prototype test validation has indicated that our approach can detect fire occurrence. Moreover, the low cost project allow the development of robots that could be discarded in their fire detection missions. © 2013 IEEE.
Resumo:
Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)
Resumo:
This paper describes an approach to solve the inverse kinematics problem of humanoid robots whose construction shows a small but non negligible offset at the hip which prevents any purely analytical solution to be developed. Knowing that a purely numerical solution is not feasible due to variable efficiency problems, the proposed one first neglects the offset presence in order to obtain an approximate “solution” by means of an analytical algorithm based on screw theory, and then uses it as the initial condition of a numerical refining procedure based on the Levenberg‐Marquardt algorithm. In this way, few iterations are needed for any specified attitude, making it possible to implement the algorithm for real‐time applications. As a way to show the algorithm’s implementation, one case of study is considered throughout the paper, represented by the SILO2 humanoid robot.
Resumo:
Robot-control designers have begun to exploit the properties of the human immune system in order to produce dynamic systems that can adapt to complex, varying, real-world tasks. Jerne’s idiotypic-network theory has proved the most popular artificial-immune-system (AIS) method for incorporation into behaviour-based robotics, since idiotypic selection produces highly adaptive responses. However, previous efforts have mostly focused on evolving the network connections and have often worked with a single, preengineered set of behaviours, limiting variability. This paper describes a method for encoding behaviours as a variable set of attributes, and shows that when the encoding is used with a genetic algorithm (GA), multiple sets of diverse behaviours can develop naturally and rapidly, providing much greater scope for flexible behaviour-selection. The algorithm is tested extensively with a simulated e-puck robot that navigates around a maze by tracking colour. Results show that highly successful behaviour sets can be generated within about 25 minutes, and that much greater diversity can be obtained when multiple autonomous populations are used, rather than a single one.
Resumo:
Simulated annealing (SA) is an optimization technique that can process cost functions with degrees of nonlinearities, discontinuities and stochasticity. It can process arbitrary boundary conditions and constraints imposed on these cost functions. The SA technique is applied to the problem of robot path planning. Three situations are considered here: the path is represented as a polyline; as a Bezier curve; and as a spline interpolated curve. In the proposed SA algorithm, the sensitivity of each continuous parameter is evaluated at each iteration increasing the number of accepted solutions. The sensitivity of each parameter is associated to its probability distribution in the definition of the next candidate. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: The objective of this study is to evaluate blood glucose (BG) control efficacy and safety of 3 insulin protocols in medical intensive care unit (MICU) patients. Methods: This was a multicenter randomized controlled trial involving 167 MICU patients with at least one BG measurement +/- 150 mg/dL and one or more of the following: mechanical ventilation, systemic inflammatory response syndrome, trauma, or burns. The interventions were computer-assisted insulin protocol (CAIP), with insulin infusion maintaining BG between 100 and 130 mg/dL; Leuven protocol, with insulin maintaining BG between 80 and 110 mg/dL; or conventional treatment-subcutaneous insulin if glucose > 150 mg/dL. The main efficacy outcome was the mean of patients` median BG, and the safety outcome was the incidence of hypoglycemia (<= 40 mg/dL). Results: The mean of patients` median BG was 125.0, 127.1, and 158.5 mg/dL for CAIP, Leuven, and conventional treatment, respectively (P = .34, CAIP vs Leuven; P < .001, CAIP vs conventional). In CAIP, 12 patients (21.4%) had at least one episode of hypoglycemia vs 24 (41.4%) in Leuven and 2 (3.8%) in conventional treatment (P = .02, CAIP vs Leuven; P = .006, CAIP vs conventional). Conclusions: The CAIP is safer than and as effective as the standard strict protocol for controlling glucose in MICU patients. Hypoglycemia was rare under conventional treatment. However, BG levels were higher than with IV insulin protocols. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Background: Perioperative complications following robotic-assisted radical prostatectomy (RARP) have been previously reported in recent series. Few studies, however, have used standardized systems to classify surgical complications, and that inconsistency has hampered accurate comparisons between different series or surgical approaches. Objective: To assess trends in the incidence and to classify perioperative surgical complications following RARP in 2500 consecutive patients. Design, setting, and participants: We analyzed 2500 patients who underwent RARP for treatment of clinically localized prostate cancer (PCa) from August 2002 to February 2009. Data were prospectively collected in a customized database and retrospectively analyzed. Intervention: All patients underwent RARP performed by a single surgeon. Measurements: The data were collected prospectively in a customized database. Complications were classified using the Clavien grading system. To evaluate trends regarding complications and radiologic anastomotic leaks, we compared eight groups of 300 patients each, categorized according the surgeon`s experience (number of cases). Results and limitations: Our median operative time was 90 min (interquartile range [IQR]: 75-100 min). The median estimated blood loss was 100 ml (IQR: 100-150 ml). Our conversion rate was 0.08%, comprising two procedures converted to standard laparoscopy due to robot malfunction. One hundred and forty complications were observed in 127 patients (5.08%). The following percentages of patients presented graded complications: grade 1, 2.24%; grade 2, 1.8%; grade 3a, 0.08%; grade 3b, 0.48%; grade 4a, 0.40%. There were no cases of multiple organ dysfunction or death (grades 4b and 5). There were significant decreases in the overall complication rates (p = 0.0034) and in the number of anastomotic leaks (p < 0.001) as the surgeon`s experience increased. Conclusions: RARP is a safe option for treatment of clinically localized PCa, presenting low complication rates in experienced hands. Although the robotic system provides the surgeon with enhanced vision and dexterity, proficiency is only accomplished with consistent surgical volume; complication rates demonstrated a tendency to decrease as the surgeon`s experience increased. (C) 2010 European Association of Urology. Published by Elsevier B. V. All rights reserved.
Resumo:
This paper addresses the problem of finding several different solutions with the same optimum performance in single objective real-world engineering problems. In this paper a parallel robot design is proposed. Thereby, this paper presents a genetic algorithm to optimize uni-objective problems with an infinite number of optimal solutions. The algorithm uses the maximin concept and ε-dominance to promote diversity over the admissible space. The performance of the proposed algorithm is analyzed with three well-known test functions and a function obtained from practical real-world engineering optimization problems. A spreading analysis is performed showing that the solutions drawn by the algorithm are well dispersed.
Resumo:
Nowadays, several sensors and mechanisms are available to estimate a mobile robot trajectory and location with respect to its surroundings. Usually absolute positioning mechanisms are the most accurate, but they also are the most expensive ones, and require pre installed equipment in the environment. Therefore, a system capable of measuring its motion and location within the environment (relative positioning) has been a research goal since the beginning of autonomous vehicles. With the increasing of the computational performance, computer vision has become faster and, therefore, became possible to incorporate it in a mobile robot. In visual odometry feature based approaches, the model estimation requires absence of feature association outliers for an accurate motion. Outliers rejection is a delicate process considering there is always a trade-off between speed and reliability of the system. This dissertation proposes an indoor 2D position system using Visual Odometry. The mobile robot has a camera pointed to the ceiling, for image analysis. As requirements, the ceiling and the oor (where the robot moves) must be planes. In the literature, RANSAC is a widely used method for outlier rejection. However, it might be slow in critical circumstances. Therefore, it is proposed a new algorithm that accelerates RANSAC, maintaining its reliability. The algorithm, called FMBF, consists on comparing image texture patterns between pictures, preserving the most similar ones. There are several types of comparisons, with different computational cost and reliability. FMBF manages those comparisons in order to optimize the trade-off between speed and reliability.
Resumo:
Introduction: In order to improve safety of pedicle screw placement several techniques have been developed. More recently robotically assisted pedicle insertion has been introduced aiming at increasing accuracy. The aim of this study was to compare this new technique with the two main pedicle insertion techniques in our unit namely fluoroscopically assisted vs EMG aided insertion. Material and methods: A total of 382 screws (78 thoracic,304 lumbar) were introduced in 64 patients (m/f = 1.37, equally distributed between insertion technique groups) by a single experienced spinal surgeon. From those, 64 (10 thoracic, 54 lumbar) were introduced in 11 patients using a miniature robotic device based on pre operative CT images under fluoroscopic control. 142 (4 thoracic, 138 lumbar) screws were introduced using lateral fluoroscopy in 27 patients while 176 (64 thoracic, 112 lumbar) screws in 26 patients were inserted using both fluoroscopy and EMG monitoring. There was no difference in the distribution of scoliotic spines between the 3 groups (n = 13). Screw position was assessed by an independent observer on CTs in axial, sagittal and coronal planes using the Rampersaud A to D classification. Data of lumbar and thoracic screws were processed separately as well as data obtained from axial, sagittal and coronal CT planes. Results: Intra- and interobserver reliability of the Rampersaud classification was moderate, (0.35 and 0.45 respectively) being the least good on axial plane. The total number of misplaced screws (C&D grades) was generally low (12 thoracic and 12 lumbar screws). Misplacement rates were same in straight and scoliotic spines. The only difference in misplacement rates was observed on axial and coronal images in the EMG assisted thoracic screw group with a higher proportion of C or D grades (p <0.05) in that group. Recorded compound muscle action potentials (CMAP) values of the inserted screws were 30.4 mA for the robot and 24.9mA for the freehand technique with a CI of 3.8 of the mean difference of 5.5 mA. Discussion: Robotic placement did improve the placement of thoracic screws but not that of lumbar screws possibly because our misplacement rates in general near that of published navigation series. Robotically assisted spine surgery might therefore enhance the safety of screw placement in particular in training settings were different users at various stages of their learning curve are involved in pedicle instrumentation.
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
This paper presents a vision-based localization approach for an underwater robot in a structured environment. The system is based on a coded pattern placed on the bottom of a water tank and an onboard down looking camera. Main features are, absolute and map-based localization, landmark detection and tracking, and real-time computation (12.5 Hz). The proposed system provides three-dimensional position and orientation of the vehicle along with its velocity. Accuracy of the drift-free estimates is very high, allowing them to be used as feedback measures of a velocity-based low-level controller. The paper details the localization algorithm, by showing some graphical results, and the accuracy of the system