942 resultados para River micro-basin
Resumo:
Describes life along the river whose basin supports one-tenth of the human race.
Resumo:
Cover title.
Resumo:
Esta dissertação apresenta os resultados do estudo de monitoramento da qualidade de água na região hidrográfica da Baixada de Jacarepaguá através de coletas e posterior análise laboratorial realizadas na bacia hidrográfica experimental e representativa do Rio Morto. A bacia possui características predominantes peri-urbanas.
Resumo:
Historical flood events produced lakes in the Mojave River watershed in southeastern California and represent climatic conditions similar to those in the late Quaternary when perennial lakes formed in the Mojave Desert. Historical lakes are related to tropical and subtropical sources of moisture and an extreme southward shift of storm tracks. It is suggested that this atmospheric pattern occurred frequently during earlier periods with perennial lakes in the Mojave River drainage basin.
Resumo:
南海北部陆缘深水区(水深>300m)蕴藏着丰富的资源,我国对深水区的地质研究刚刚起步,但相关领域已成为科研热点。深水油气盆地的构造演化是油气勘探中最重要的基础性研究之一,因此针对我国南海北部陆缘深水区开展构造演化及其资源效应的研究具有重要的理论意义和实际意义。 本文利用钻井和地震资料并结合区域地质资料,重点研究了珠江口盆地深水区的结构和构造演化,取得如下创新性成果:1)首次利用半地堑分析方法系统解剖了研究区的结构、各构造单元发育特征,在此基础上指出五个有利油气运聚带;2)采用回剥法并利用最新资料进行校正,得到了研究区更为可靠的构造沉降曲线,重新划分了裂陷期和裂后期的分界,认为32Ma南海海底扩张之后裂陷作用仍在持续,直到23Ma左右才开始大规模裂后热沉降,并进一步解释了裂陷期延迟的形成机制;3)应用非连续拉张模型计算拉张系数的方程计算了研究区的壳幔拉张系数,指出了深水区地幔相对于地壳的优势伸展作用;首次运用平衡剖面技术重建了研究区的构造发育史,计算了各构造期的拉张率和沉积速率,指出研究区新生代整体呈现持续拉张,拉张系数在1.1-1.24之间;4)精细刻画了水合物钻采区的地质构造特征,建立了该区天然气水合物成藏的概念模式;建立了一套根据地震叠加速度计算流体势的方法,为水合物成藏规律的研究提供了新的思路。
Resumo:
Abstract In order to provide basic data for evaluation of the petroleum potential in the deep water area of the northern margin of the South China Sea (SCS), present-day thermal regime and basin tectonothermal evolution are reconstructed and the maturation history of the Cenozoic major source rocks in the study area is derived. The present-day geothermal regime in the deep water area of the northern margin of SCS is defined according to the geothermal gradient, thermal properties and heat flow data. Tectonic subsidence history is reconstructed based on borehole and seismic data, and accordingly the stretching episodes are determined from the subsidence pattern. Heat flow history in the deep water area of the northern margin of SCS is estimated on a finite time, laterally non-uniform and multi-episode stretching model. Maturation history of the main source rocks in the study area is estimated through EASYRo% kinetic model and thermal history, and the potential of petroleum in the deep water area of the northern margin of SCS is evaluated based on the data above. The results show that the present-day geothermal regime in the deep water area of the northern margin of SCS is characterized by “hot basin” with high geothermal gradient (39.1±7.4℃/km) and high heat flow (77.5±14.8 mW/m2), and that the Qiongdongnan Basin (QDNB) underwent three stretching episodes and consequently suffered three heating episodes (Eocene, Oligocene and Pliocene time) with highest paleo-heat flow of 65~90 mW/m2 at the end of the Pliocene, that the Pearl River Mouth Basin (PRMB) two stretching and two heating episodes (Eocene, Oligocene time) with highest paleo-heat flow of 60~70 mW/m2 at the end of the Oligocene, and that the source rocks matured drastically responding to the heating episodes. There are four hydrocarbon generation kitchens in the deep water area of the northern margin of SCS which are favor of its bright petroleum perspective. Tectonothermal analysis indicates that the present-day geothermal regime which is characterized with “hot basin” in the deep water area of the PRMB resulted mainly from the Cenozoic stretching as well as faulting and magmatic activities during the Neotectonic period, and that the Pliocene heating episode of the QDNB is coupled with the transition from sinistral to dextral gliding of the Red Rive fault, and that the deep water basins in the northern margin of SCS are typical of multiple rifting which caused multi-episode heating process.
Resumo:
This thesis focuses on the present-day thermal field features, evolution and their connections to hydrocarbon generation of the three continental margin basins-the Yinggehai (Yingge Sea), Qiongdongnan(southeast Qiong), and Pear River Mouth basins-in northern South China Sea, based on available data from drillings, loggings, seismic cross-sections, BHTs, thermal indicators (Ro%, inclusion, etc) and geopressure measurements. After studying of present-day distribution of geothermal field and thermal disturbance of fluid in the sedimentary strata, the author discovered that the distribution of gas fields in Yinggehai Basin are closely related to the distribution of anomalously high thermal gradient area, whereas it is not the case for the Pear River Mouse Basin. And detailed processing of the fluid inclusion data indicates that geothermal fluids activated frequently in this area, and they may mainly be derived upward from the overpressure and hydrocarbon-generating beds, 3000-4500 m in depth. Therefore, the abnormal gradients in sedimentary beds were mainly caused by the active geothermal fluids related to hydrocarbon migrating and accumulating in this area. Because of the effect of overpressure retarding on vitrinite reflectance, the thermal indicators for thermal history reconstruction should be assessed before put into use. Although some factors, such as different types of kerogen, heating ratio, activities of thermal fluids and overpressure, may have effects on the vitrinite reflectance, under the circumstance that thermal fluids and overpressure co-exist, overpressure retarding is dominant. And the depth and correction method of overpressure retarding were also determined in this paper. On the basis of reviewing the methods of thermal history studies as well as existing problems, the author believes that the combination of thermal-indicator-inversion and tectono-thermal modeling is an effective method of the thermal history reconstruction for sedimentary basins. Also, a software BaTherMod for modeling thermal history of basins was successfully developed in this work. The Yinggehai Basin has been active since Tertiary, and this was obviously due to its tectonic position-the plate transition zone. Under the background of high thermal flow, long-term quick subsidence and fluid activities were the main reasons that lead to high temperature and overpressure in this basin. The Zhujiangkou Basin, a Tertiary fault-basin within the circum-Pacific tectonic realm, was tectonically controlled by the motion of the Pacific Plate and resembles the other petroliferous basins in eastern China. This basin developed early, and characterized intensive extension in the early stage and weak activity in the later stage of its development. Whereas the Qiongdongnan Basin was in a weak extension early and intensity of extension increased gradually. The relative geographical locations and the extensional histories of three basins ilustrate that the northern continental margin of South China Sea spread from south to north. On the other hand, the Qiongdongnan and Yinggehai Basins may have been controlled by the same tectonic regime since later Tertiary, whereas the Zhujiangkou Basin was not meaningfully influenced. So, the tectono-thermal evolution character of the Qiongdonnan basin should be closely to the other two. It may be concluded that the three basins have been developed within the active continental margin since Tertiary, and the local lithosphere might undergo intensive extension-perhaps two or three times of episodic extension occurred. Extension lead to large tectonoc subsidence and extreme thick Tertiary sediments for hydrocarbon generation in the basins. In response to the periodic extension of the basins, the palaeothermal flow were also periodical. The three basins all have the characteristics of multi-phase thermal evolutions that is good for oil-gas generation. And the overpressure expands the depth range of oil-gas habitat, which is meaningful to petroleum exploration in this region.
Resumo:
River is a major component of the global surface water and CO2 cycles. The chemistry of river waters reveals the nature of weathering on a basin-wide scale and helps us understand the exogenic cycles of elements in the continent-river-ocean system. In particular, geochemical investigation of large river gives important information on the biogeochemical cycles of the elements, chemical weathering rates, physical erosion rates and CO2 consumption during the weathering of the rocks within the drainage basin. Its importance has led to a number of detailed geochemical studies on some of the world's large and medium-size river systems. Flowing in the south of China, the Xijiang River is the second largest river in the China with respect to its discharge, after the Yangtze River. Its headwaters drain the YunGui Plateau, where altitude is approximately 2000 meters. Geologically, the carbonate rocks are widely spread in the river drainage basin, which covers an area of about 0.17xl06 km2, i.e., 39% of the whole drainage basin. This study focuses on the chemistry of the Xijiang river system and constitutes the first geochemical investigation into major and trace elements concentrations for both suspended and dissolved loads of this river and its main tributaries, and Sr isotopic composition of the dissolved load is also investigated, in order to determine both chemical weathering and mechanical erosion rates. As compared with the other large rivers of the world, the Xijiang River is characterized by higher major element concentration. The dissolved major cations average 1.17, 0.33, 0.15, and 0.04 mmol I"1 for Ca, Mg, Na, and K, respectively. The total cation concentrations (TZ+) in these rivers vary between 2.2 and 4.4 meq I'1. The high concentration of Ca and Mg, high (Ca+Mg)/(Na+K) ratio (7.9), enormous alkalinity and low dissolved SiO2/HCO3 ratio (0.05) in river waters reveal the importance of carbonate weathering and relatively weak silicate weathering over the river drainage basin. The major elements in river water, such as the alkalis and alkaline-earths, are of different origins: from rain water, silicate weathering, carbonate and evaporite weathering. A mixing model based on mass budget equation is used in this study, which allows the proportions of each element derived from the different source to be calculated. The carbonate weathering is the main source of these elements in the Xijiang drainage basin. The contribution of rainwater, especially for Na, reaches to approximately 50% in some tributaries. Dissolved elemental concentration of the river waters are corrected for rain inputs (mainly oceanic salts), the elemental concentrations derived from the different rock weathering are calculated. As a consequence, silicate, carbonate and total rock weathering rates, together with the consumption rates of atmospheric CO2 by weathering of each of these lithologies have been estimated. They provide specific chemical erosion rates varying between 5.1~17.8 t/km2/yr for silicate, 95.5~157.2 t/km2/yr for carbonate, and 100.6-169.1 t/km2/yr for total rock, respectively. CO2 consumptions by silicate and carbonate weathering approach 13><109and 270.5x10 mol/yr. Mechanical denudation rates deduced from the multi-year average of suspended load concentrations range from 92-874 t/km2/yr. The high denudation rates are mainly attributable to high relief and heavy rainfall, and acid rain is very frequent in the drainage basin, may exceed 50% and the pH value of rainwater may be <4.0, result from SO2 pollution in the atmosphere, results in the dissolution of carbonates and aluminosilicates and hence accelerates the chemical erosion rate. The compositions of minerals and elements of suspended particulate matter are also investigated. The most soluble elements (e.g. Ca, Na, Sr, Mg) are strongly depleted in the suspended phase with respect to upper continent crust, which reflects the high intensity of rock weathering in the drainage basin. Some elements (e.g. Pb, Cu, Co, Cr) show positive anomalies, Pb/Th ratios in suspended matter approach 7 times (Liu Jiang) to 10 times (Nanpan Jiang) the crustal value. The enrichment of these elements in suspended matter reflects the intensity both of anthropogenic pollution and adsorption processes onto particles. The contents of the soluble fraction of rare earth elements (REE) in the river are low, and REE mainly reside in particulate phase. In dissolved phase, the PAAS-normalized distribution patterns show significant HREE enrichment with (La/Yb) SN=0.26~0.94 and Ce depletion with (Ce/Ce*) SN=0.31-0.98, and the most pronounced negative Ce anomalies occur in rivers of high pH. In the suspended phase, the rivers have LREE-enriched patterns relative to PAAS, with (La/Yb) SN=1 -00-1 .40. The results suggest that pH is a major factor controlling both the absolute abundances of REE in solution and the fractionation of REE of dissolved phase. Ce depletion in river waters with high pH values results probably from both preferential removal of Ce onto Fe-Mn oxide coating of particles and CeC^ sedimentation. This process is known to occur in the marine environment and may also occur in high pH rivers. Positive correlations are also observed between La/Yb ratio and DOC, HCO3", PO4", suggesting that colloids and (or) adsorption processes play an important role in the control of these elements.
Resumo:
The foreland basin on the northern margin of the lower reach of the Yangtze river (the lower Yangtze foreland basin) is tectonically situated in the basin-mountain transitional area along the southeastern flank of the Dabie mountains. The early formation and development of the basin is closely related to the open-up of the Mian-Lue paleo-oceanic basin on the southern margin of the Central Orogenic System represented by Qinling-Dabei orogenic belt, while the tectonic evolution of the middle-late stage of the basin is mainly related to development of the Mian-Lue tectonic zone that occurred on the basis of the previous Mian-Lue paleo-suture. The foreland basin of the northern rim of the lower reach of the Yangtze river was formed during the middle-Triassic collision between the Yangtze and North China plates and experienced an evolution of occuirence-development-extinction characterized by marine facies to continental facies and continental margin to intracontinent in terms of tectonic setting.The foreland basin (T2-J2) was developed on the basis of the passive continental marginal basin on the south side of the Mian-Lue paleo-ocean and superimposed by late Jurassic-Tertiary fault basin. The tectonic setting underwent a multiple transformation of rifting-collisional clososing-tensional faulting and depression, which resulted in changes of the property for the basin and the final formation of the superposed compose basin in a fashion of 3-story-building. According to the tectonic position and evolution stages of plate collision happening on the southeastern margin of the Dabie mountains, and tectono-tratigraphic features shown by the foreland basin in its main formational period, the evolution of the foreland basin can be divided into four stages: 1) pre-orogenic passive margin (P2-Ti). As the Mian-Lue ocean commenced subduction in the late-Permian, the approaching of the Yangtze and North China plates to each other led to long-periodical and large-scale marine regression in early Triassic which was 22 Ma earlier than the global one and generated I-type mixed strata of the clastic rocks and carbonate, and I-type carbonate platform. These represent the passive stratigraphy formed before formation of the foreland basin. 2) Foreland basin on continental margin during main orogenic episode (T2.3). The stage includes the sub-stage of marine foreland basin (T2X remain basin), which formed I-type stratigrphy of carbonate tidal flat-lagoon, the sub-stage of marine-continental transition-molasse showing II-type stratigraphy of marine-continental facies lake - continental facies lake. 3) Intracontinental foreland basin during intracontinental orogeny (Ji-2)- It is characterized by continental facies coal-bearing molasses. 4) Tensional fault and depression during post-orogeny (J3-E). It formed tectono-stratigraphy post formation of the foreland basin, marking the end of the foreland evolution. Fold-thrust deformation of the lower Yangtze foreland basin mainly happened in late middle-Jurassic, forming ramp structures along the Yangtze river that display thrusting, with deformation strength weakening toward the river from both the Dabie mountains and the Jiangnan rise. This exhibits as three zones in a pattern of thick-skinned structure involved the basement of the orogenic belt to decollement thin-skinned structure of fold-thrust from north to south: thrust zone of foreland basin on northern rim of the lower reach of the Yangtze river, foreland basin zone and Jiannan compose uplift zone. Due to the superposed tensional deformation on the earlier compressional deformation, the structural geometric stratification has occurred vertically: the upper part exhibits late tensional deformation, the middle portion is characterized by ramp fault -fold deformation on the base of the Silurian decollement and weak deformation in the lower portion consisting of Silurian and Neo-Proterozoic separated by the two decollements. These portions constitutes a three-layered structural assemblage in a 3-D geometric model.From the succession of the lower reach of the Yangtze river and combined with characteristics of hydrocarbon-bearing rocks and oil-gas system, it can be seen that the succession of the continental facies foreland basin overlies the marine facies stratigraphy on the passive continental margin, which formed upper continental facies and lower marine facies hydrocarbon-bearing rock system and oil-gas forming system possessing the basic conditions for oil-gas occurrence. Among the conditions, the key for oil-gas accumulation is development and preservation of the marine hydrocarbon-bearing rocks underlying the foreland basin. The synthetic study that in the lower Yangtze foreland basin (including the Wangjiang-Qianshan basin), the generation-reservoir-cover association with the Permian marine facies hydrocarbon-bearing rocks as the critical portion can be a prospective oil-gas accumulation.Therefore, it should aim at the upper Paleozoic marine hydrocarbon-bearing rock system and oil-gas forming system in oil-gas evaluation and exploration. Also, fining excellent reservoir phase and well-preserved oil-gas accumulation units is extremely important for a breakthrough in oil-gas exploration.
Disponibilidad del recurso hídrico en la microcuenca del río Bermúdez. Región central de Costa Rica.
Resumo:
La microcuenca del río Bermúdez es parte de la principal zona de explotación hídrica en la región Central de Costa Rica, razón por la cual se realiza un diagnóstico de la disponibilidad del recurso hídrico en esta microcuenca donde se identifican las áreas con mayor problemática de disponibilidad de este recurso. Para ello se calculó un balance hídrico mensual, según uso del suelo, unidad geomorfológica y zona climática. Con base en este balance se determinó y clasificó la disponibilidad del recurso, identificando en la microcuenca solamente tres categorías: alta, media y moderada. No existen áreas de baja disponibilidad de recurso hídrico lo que demuestra que la oferta es suficiente, sin embargo, existe una presión importante sobre el recurso hídrico pues más de la mitad del área de la microcuenca se encuentra con una disponibilidad moderada.
Resumo:
This part contains geomorphological, hydrological and other information concerning the desktop research of the River Tyne catchment area.
Resumo:
This section consists of a comprehensive collection of bibliographic information covering five important themes to help you with the desktop research of the River Tyne catchment area.
Resumo:
In this section, you will find maps showing various important aspects of the River Tyne catchment area. All the maps are drawn based on Ordnance Survey data made available via the Digimap service. For the land cover maps of the catchment area, four variants are provided. Please note that the full details of the intext citations quoted in some of the following maps can be found in the full bibliographic listing.
Resumo:
The Tyne Digital Library (TDL) provides access to scholarly materials (e.g. papers, book chapters, bibliographic reference lists), databases of hydrological and physical information, maps of key physiographic and environmental data, and electronic journal articles, for students undertaking GEOG3023 River Basin Management. In addition, the TDL utilises technological innovations that enhance services for accessing this information.
Resumo:
The Tyne Digital Library (TDL) provides access to scholarly materials (e.g. papers, book chapters, bibliographic reference lists), databases of hydrological and physical information, maps of key physiographic and environmental data, and electronic journal articles, for students undertaking GEOG3023 River Basin Management. In addition, the TDL utilises technological innovations that enhance services for accessing this information.