969 resultados para Ribeira Fold Belt


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Tamboril-Santa Quiteria Complex is an important Neoproterozoic granitic-migmatitic unit from the Ceara Central Domain that developed from ca. 650 to 610 Ma. In general the granitoids range in composition from diorite to granite with predominance (up to 85%) of granitic to monzogranitic composition with biotite as the main mafic AFM phase. Geochemical and Pb-207/Pb-206 evaporation zircon geochronology studies were applied in a group of these abundant monzogranitic rocks from the region of Novo Oriente in the southern portion of the Ceara Central Domain. In this area the granitoids are weakly peraluminous biotite granitoids and deformed biotite granitoids of high-K calc-alkaline and ferroan composition, which we interpreted as primary magmas (segregated diatexites) derived from the partial melting of crustal material. The close temporal relation of this magmatism with local eclogitic and regional high temperature metamorphism in Ceara Central Domain point out to an orogenic setting, arguably emplaced during the collisional stage. Subordinate coeval juvenile mantle incursions are also present. This crustally derived magmatism is the primary product of the continental thickening that resulted from the collision between the rocks represented by the Amazonian-West African craton (Sao Luiz cratonic fragment) to the northwest and the Paleoproterozoic-Archean basement of the Borborema Province to the southeast along the Transbrasiliano tectonic corridor. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The PhD thesis at hand consists of three parts and describes the petrogenetic evolution of Uralian-Alaskan-type mafic ultramafic complexes in the Ural Mountains, Russia. Uralian-Alaskan-type mafic-ultramafic complexes are recognized as a distinct class of intrusions. Characteristic petrologic features are the concentric zonation of a central dunite body grading outward into wehrlite, clinopyroxenite and gabbro, the absence of orthopyroxene and frequently occurring platinum group element (PGE) mineralization. In addition, the presence of ferric iron-rich spinel discriminates Uralian-Alaskan-type complexes from most other mafic ultramafic rock assemblages. The studied Uralian-Alaskan-type complexes (Nizhnii Tagil, Kytlym and Svetley Bor) belong to the southern part of a 900 km long, N–S-trending chain of similar intrusions between the Main Uralian Fault to the west and the Serov-Mauk Fault to the east. The first chapter of this thesis studies the evolution of the ultramafic rocks tracing the compositional variations of rock forming and accessory minerals. The comparison of the chemical composition of olivine, clinopyroxene and chromian spinel from the Urals with data from other localities indicates that they are unique intrusions having a characteristic spinel and clinopyroxene chemistry. Laser ablation-ICPMS (LA-ICPMS ) analyses of trace element concentrations in clinopyroxene are used to calculate the composition of their parental melt which is characterized by enriched LREE (0.5-5.2 prim. mantle) and other highly incompatible elements (U, Th, Ba, Rb) relative to the HREE (0.25-2.0 prim. mantle). A subduction-related geotectonic setting is indicated by a positive anomaly for Sr and negative anomalies for Ti, Zr and Hf. The mineral compositions monitor the evolution of the parental magmas and decipher differences between the studied complexes. In addition, the observed variation in LREE/HREE (for example La/Lu = 2-24) can be best explained with the model of an episodically replenished and erupted open magma chamber system with the extensive fractionation of olivine, spinel and clinopyroxene. The data also show that ankaramites in a subduction-related geotectonic setting could represent parental magmas of Uralian-Alaskan-type complexes. The second chapter of the thesis discusses the chemical variation of major and trace elements in rock-forming minerals of the mafic rocks. Electron microprobe and LA-ICPMS analyses are used to quantitatively describe the petrogenetic relationship between the different gabbroic lithologies and their genetic link to the ultramafic rocks. The composition of clinopyroxene identifies the presence of melts with different trace element abundances on the scale of a thin section and suggests the presence of open system crustal magma chambers. Even on a regional scale the large variation of trace element concentrations and ratios in clinopyroxene (e.g. La/Lu = 3-55) is best explained by the interaction of at least two fundamentally different magma types at various stages of fractionation. This requires the existence of a complex magma chamber system fed with multiple pulses of magmas from at least two different coeval sources in a subduction-related environment. One source produces silica saturated Island arc tholeiitic melts. The second source produces silica undersaturated, ultra-calcic, alkaline melts. Taken these data collectively, the mixing of the two different parental magmas is the dominant petrogenetic process explaining the observed chemical variations. The results further imply that this is an intrinsic feature of Uralian-Alaskan-type complexes and probably of many similar mafic-ultramafic complexes world-wide. In the third chapter of this thesis the major element composition of homogeneous and exsolved spinel is used as a petrogenetic indicator. Homogeneous chromian spinel in dunites and wehrlites monitors the fractionation during the early stages of the magma chamber and the onset of clinopyroxene fractionation as well as the reaction of spinel with interstitial liquid. Exsolved spinel is present in mafic and ultramafic rocks from all three studied complexes. Its composition lies along a solvus curve which defines an equilibrium temperature of 600°C, given that spinel coexists with olivine. This temperature is considered to be close to the temperature of the host rocks into which the studied Uralian-Alaskan-type complexes intruded. The similarity of the exsolution temperatures in the different complexes over a distance of several hundred kilometres implies a regional tectonic event that terminated the exsolution process. This event is potentially associated with the final exhumation of the Uralian-Alaskan-type complexes along the Main Uralian Fault and the Serov-Mauk Fault in the Uralian fold belt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New 40Ar/39Ar ages for alunite from the Moore and Monte Negro deposits in the Pueblo Viejo district, as well as from a newly discovered alunite-bearing zone on Loma la Cuaba west of the known deposits, are reported here. The ages range from about 80 to 40 Ma, with closely adjacent samples exhibiting very different ages. Interpretation of these results in the context of estimated closure temperatures for alunite and the geologic and tectonic evolution of Hispaniola does not lead to a simple conclusion about the age of mineralization. The simplest interpretation, that mineralization was caused by a buried Late Cretaceous (~80 Ma) intrusion, is complicated by lack of intrusions of this age in the area and absence of alteration in overlying limestone. The alternative interpretation, that mineralization was formed during Early Cretaceous (~110 Ma) magmatism and that the 40Ar/39Ar ages were completely reset by Late Cretaceous thrusting, is complicated by a lack of information on the timing and thermal effects of thrusting in central Hispaniola. Alunite studies have yielded similar unclear results in other pre-Cenozoic ore systems, notably those of the Lachlan fold belt in Australia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mudrocks and carbonates of the Isa superbasin in the Lawn Hill platform in northern Australia host major base metal sulfide mineralization, including the giant strata-bound Century Zn-Pb deposit. Mineral paragenesis, stable isotope, and K-Ar dating studies demonstrate that long-lived structures such as the Termite Range fault acted as hot fluid conduits several times during the Paleoproterozoic and Mesoproterozoic in response to major tectonic events. Illite and chlorite crystallinity studies suggest the southern part of the platform has experienced higher temperatures (up to 300 degrees C) than similar stratigraphic horizons in the north. The irregular downhole variation of illite crystallinity values provides further information oil the thermal regime in the basin and shows that clay formation was controlled not only by temperature increase with depth but also by high water/rock ratios along relatively permeable zones. K-Ar dating of illite, in combination with other data, may indicate three major thermal events in the central and northern Lawn Hill platform Lit 1500, 1440 to 1400, and 1250 to 1150 Ma. This study did not detect the earlier Century base metal mineralizing event at 1575 Ma. 1500 Ma ages are recorded only in the south and correspond to the age of the Late Isan orogeny and deposition of the Lower Roper superbasin. They may reflect exhumation of a provenance region. The 1440 to 1300 Ma ages are related to fault reactivation and a thermal pulse at similar to 1440 to 1400 Ma possibly accompanied by fluid flow, with subsequent enhanced cooling possibly due to thermal relaxation or further crustal exhumation. The youngest thermal and/or fluid-flow event at 1250 to 1150 Ma is recorded mainly to the cast of the Tern-lite Range fault and may be related to the assembly of the Rodinian supercontinent. Fluids in equilibrium with illite that formed over a range of temperatures, at different times in different parts of the platform. have relatively uniform oxygen isotope compositions and more variable hydrogen isotope compositions (delta O-18 = 3.5-9.7 parts per thousand V-SMOW; delta D = -94 to -36 parts per thousand V-SMOW). The extent of the 180 enrichment and the variably depleted hydrogen isotope compositions suggest the illite interacted with deep-basin hypersaline brines that were composed of evaporated seawater and/or highly evolved meteoric water. Siderite is the most abundant iron-rich gangue phase in the Century Zn-Pb deposit, which is surrounded by all extensive ferroan carbonate alteration halo. Modeling suggests that the ore siderite formed at temperatures of 120 degrees to 150 degrees C, whereas siderite and ankerite in the alteration halo formed at temperatures of 150 degrees to 180 degrees C. The calculated isotopic compositions of the fluids are consistent with O-18-rich basinal brines and mixed inorganic and organic carbon Sources (6180 = 3-10 parts per thousand V-SMOW, delta C-13 = -7 to -3 parts per thousand V-PDB). in the northeast Lawn Hill platform carbonate-rich rocks preserve marine to early diagenetic carbon and oxygen isotope compositions, whereas ferroan carbonate cements in siltstones and shales in the Desert Creek borehole are O-18 and C-13 depleted relative to the sedimentary carbonates. The good agreement between temperature estimates from illite crystallinity and organic reflectance (160 degrees-270 degrees C) and inverse correlation with carbonate delta O-18 values indicates that organic maturation and carbonate precipitation in the northeast Lawn Hill platform resulted from interaction with the 1250 to 1150 Ma fluids. The calculated isotopic compositions of the fluid are consistent with evolved basinal brine (delta O-18 = 5.1-9.4 parts per thousand V-SMOW; delta C-13 = -13.2 to -3.7 parts per thousand V-PDB) that contained a variable organic carbon component from the oxidation and/or hydrolysis of organic matter in the host sequence. The occurrence of extensive O-18- and C-13-depleted ankerite and siderite alteration in Desert Creek is related to the high temperature of the 1250 to 1150 Ma fluid-flow event in the northeast Lawn Hill platform, in contrast to the lower temperature fluids associated with the earlier Century Zn-Pb deposit in the central Lawn Hill platform.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Li-delta18O-SiO2 relationships have been examined for suites of spilitized basaltic rocks (DSDP 504B; Xigaze Ophiolite; Blanco Fracture Zone; Greater Caucasus; Rhenohercynian Fold Belt) and intra-plate evolved tholeiites (Northern Hessian Depression and Vogelsberg, W Germany; Mount Falla, Transantarctic Mountains). Relative to unaltered MORB and intra-plate primary olivine tholeiites, both the spilitic rocks and the evolved tholeiites are characterized by Li and 18O enrichment. For the spilitic rocks, Li and 18O enrichment is accompanied by a loss of SiO2 as a result of seawater hydrothermal alteration, whereas the evolved tholeiites have gained SiO2, Li and 18O from fractionation of mafic phases and assimilation of crustal rocks. On Li vs. SiO2 and delta18O vs. SiO2 diagrams, the two rock groups plot largely in distinct fields, suggesting the possibility of so distinguishing between such lithologies in the ancient rock record. Mafic granulite xenoliths from the Northern Hessian Depression have elevated Li and 18O abundances at low SiO2 contents. Even after correction for extraction of felsic components, their Li-delta18O-SiO2 signatures plot within the field of spilitic protoliths, suggesting that the lower crust in this region contains relics of spilitic rocks from a former oceanic crust.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A área estudada está inserida na Faixa Ribeira, Segmento Central da Província Mantiqueira (Almeida et al., 1973, 1977, 1981), que representa um cinturão de dobramentos e empurrões gerado no Neo-proterozóico/Cambriano, durante a Orogênese Brasiliana, na borda sul/sudeste do Cráton do São Francisco (Almeida, 1971, 1977; Cordani et al., 1967, 1973; Cordani & Brito Neves, 1982; Teixeira & Figueiredo, 1991). Neste contexto, o Complexo Quirino é o embasamento retrabalhado do Terreno Paraíba do Sul (Heilbron et al., 2004). O Complexo Quirino é formado por extensos corpos de ortognaisses foliados a homogêneos, leuco a mesocráticos, de granulometria média à grossa, composicionalmente variando entre granitóides tonalíticos/granodioríticos a graníticos, e apresentando enclaves de rochas ultramáficas, máficas e cálcio-silicáticas (ricas em tremolita). Os ortognaisses tonalíticos/granodioríticos apresentam porfiroblastos de plagioclásio e a hornblenda como máfico principal, contrastando com os de composição granítica que apresentam porfiroblastos de K-feldspato e biotita predominante. Como acessórios aparecem zircão, titanita, apatita e epidoto. Também estão associados a estes ortognaisses, granitóides neoproterozóicos que formam corpos individualizados ou lentes anatéticas no conjunto paleoproterozóico. Estes são compostos predominantemente por biotita gnaisse e hornblenda-biotita gnaisse. A análise litogeoquímicas dos ortognaisses do Complexo Quirino demonstrou a existência de duas séries magmáticas distintas. A primeira pertencente à série cálcio-alcalina de alto-K apresenta uma composição mais expandida granítica-adamelítica/granodioritica/tonalítica e é correlacionável aos bt-ortognaisses e alguns hb-bt-ortognaisses. Os ortognaisses da série médio-K apresentam composição predominantemente tonalítica, sendo correlacionáveis à maioria dos hornblenda-biotita gnaisses. Enclaves lenticulares de metapiroxeníticos e anfibolíticos ocorrem em muitos afloramentos. Também ocorrem granitóides neoproterozóicos de composição graníticas a quartzo-monzoníticas O estudo isotópico de Sm-Nd e Sr demonstrou que os ortognaisses da série cálcio-alcalina de alto-K e aqueles da série cálcio-alcalina de médio-K possuem idades modelo TDM variando entre paleoproterozóicas a arqueanas, consistentes com dados U-Pb em zircão publicados na literatura. A série cálcio-alcalina de alto-K é mais antiga (2308 9,2 Ma a 2185 8 Ma) do que a série calcio-alcalina de médio-K (2169 3 a 2136 14 Ma) e a existência de zircões herdados com idades mínimas de 2846 Ma e 2981 Ma para série de médio-K e 3388 16 para série de alto-K. Os granitóides brasilianos possuem idades de cristalização neoproterozóica correlacionada a Orogênese Brasiliana (602 a 627 Ma) (Viana, 2008; Valladares et al., 2002)./Com base nos dados de Sr e Sm-Nd foi possível caracterizar 4 grupos distintos. Os grupos 1 e 2 são formados por rochas de idade paleoproterozóica (2,1 a 2,3 Ga) com idades modelo TDM variando de 2,9 e 3,4 Ga, εNd entre -8,1 e -5,8 e 87Sr/86Sr(t) = 0,694707 (Grupo 1) e TDM variando de 2,5 a 2,7 Ga, εNd entre -5,8 e -3,1 e 87Sr/86Sr(t) = 0,680824 (Grupo 2), formados no paleoproterozóico com contribuição de uma crosta arqueana. O grupo 3 é formado por rochas juvenis de idade paleoproterozóica, com idades de cristalização variando entre 2,0 e 2,2 Ga e com idades modelo TDM variando de 2,1 a 2,2 Ga e εNd entre + 1,5 e + 1,2. O grupo 4 é formado durante o neoproterozóico (645 Ma) por rochas possivelmente de idade paleoproterozóico com idades modelo TDM igual a 1,7 Ga e εNd igual a -8,3.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

White micas in carbonate-rich tectonites and a few other rock types of large thrusts in the Swiss Helvetic fold-and-thrust belt have been analyzed by Ar-40/Ar-39 and Rb/Sr techniques to better constrain the timing of Alpine deformation for this region. Incremental Ar-40/Ar-39 heating experiments of 25 weakly metamorphosed (anchizone to low greenschist) samples yield plateau and staircase spectra. We interpret most of the staircase release spectra result from variable mixtures of syntectonic (neoformed) and detrital micas. The range in dates obtained within individual spectra depends primarily on the duration of mica nucleation and growth, and relative proportions of neoformed and detrital mica. Rb/Sr analyses of 12 samples yield dates of ca. 10-39 Ma (excluding one anomalously young sample). These dates are slightly younger than the Ar-40/Ar-39 total gas dates obtained for the same samples. The Rb/ Sr dates were calculated using initial Sr-87/Sr-86 ratios obtained from the carbonate-dominated host rocks, which are higher than normal Mesozoic carbonate values due to exchange with fluids of higher Sr-87/Sr-86 ratios (and lower O-18/O-16 ratios). Model dates calculated using Sr-87/Sr-86 values typical of Mesozoic marine carbonates more closely approximate the Ar-40/Ar-39 total gas dates for most of the samples. The similarities of Rb/Sr and Ar-40/Ar-39 total gas dates are consistent with limited amounts of detrital mica in the samples. The delta(18)O values range from 24-15%. (VSMOW) for 2-6 mum micas and 27-16parts per thousand for the carbonate host rocks. The carbonate values are significantly lower than their protolith values due to localized fluid-rock interaction and fluid flow along most thrust surfaces. Although most calcite-mica pairs are not in oxygen isotope equilibrium at temperatures of ca. 200-400 degreesC, their isotopic fractionations are indicative of either 1) partial exchange between the minerals and a common external fluid, or 2) growth or isotopic exchange of the mica with the carbonate after the carbonate had isotopically exchanged with an external fluid. The geological significance of these results is not easily or uniquely determined, and exemplifies the difficulties inherent in dating very fine-grained micas of highly deformed tectonites in low-grade metamorphic terranes. Two generalizations can be made regarding the dates obtained from the Helvetic thrusts: 1) samples from the two highest thrusts (Mt. Gond and Sublage) have all of their Ar-40/Ar-39 steps above 20 Ma, and 2) most samples from the deepest Helvetic thrusts have steps (often accounting for more than 80% of Ar-39 release) between 15 and 25 Ma. These dates are consistent with the order of thrusting in the foreland-imbricating system and increase proportions of neoformed to detrital mica in the more metamorphosed hinterland and deeply buried portions of the nappe pile. Individual thrusts accommodated the majority of their displacement during their initial incorporation into the foreland-imbricating system, and some thrusts remained active or were reactivated down to 15 Ma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The South-American continent is constituted of three major geologic-geotectonic entities the homonym platform (consolidated at the end of the Cambrian) the Andean chain (essentially Meso-Cenozoic) and the Patagonian terrains affected by tectonism and magmatism through almost all of the Phanerozoic The platform is constituted by a series of cratonic nuclei (pre-Tonian fragments of the Rodinia fission) surrounded by a complex fabric of Neoproterozoic structural provinces Two major groups of orogenic processes (plate interaction cycles) constitute the evolution of these provinces the older occurred in the Tonian (smaller in area) and the younger Brasiliano that is present in all provinces The Tonian cycles (pre-Rodinia fission?) are still being sorted out and many questions still need to be answered The Brasiliano orogenic collage events (post-Rodinia fission?) developed in three main stages in part coeval from a province to another and are 650-600 580-560 and 540-500 Ma respectively (the late event reaching the Ordovician) The first group of orogenies is recorded in practically all provinces The third group is restricted to part of the Mantiqueira Province (southeast of the platform Buzios Orogeny) and present in the Pampean province (SW of the platform) For all these groups of orogenic events there are considerable records of rock assemblages related to processes of convergent plate interaction opening accretion collision and further extrusion There is a good correlation between the geologic and geotectonic data and geochemical and isotopic data The late tectonic processes (post-orogenic magmatism foreland basins etc) of the first two groups compete in time in distinct spaces with the peak of orogenic processes in the third group The introduction of the SHRIMP U-Pb methodology was fundamental to separate the Tonian and post-Tonian orogenic groups and their respective divisions in time and space Thus there are still many open points/problems which lead to expectations of addressing these issues in the near future with the more Intense use of this methodology (C) 2010 Elsevier B V All rights reserved

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Important concentrations of tourmaline occur as gold-bearing stratiform tourmalinites and in mineralized quartz-tourmaline veins at the Tapera Grande and Quartzito gold prospects in the Mesoproterozoic Serra do Itaberaba Group, central Ribeira Belt (Sao Paulo State, SE Brazil). The main rock types in both prospects constitute the volcanic-sedimentary Morro da Pedra Preta Formation, which formed in a submarine back-arc setting. At Tapera Grande, the volcanic-sedimentary sequence is composed of metabasic and metavolcaniclastic rocks, graphitic and sulfur-rich metapelites, banded iron formation, metandesite, metarhyolite, calcsilicates, tourmalinites and metahydrothermalites derived from mafic and felsic rocks. The Mesoproterozoic rocks at Quartzito prospect are lithologically similar but they have been affected by Neoproterozoic faulting and shearing and by the emplacement of granitic rocks, resulting in the formation of tourmaline-rich quartz-carbonate veins with gold and base metal mineralization. We conducted a chemical and B-isotope study of tourmalines in order to better understand the origin of the stratiform tourmalinites in the Morro da Pedra Preta Formation and their relationship with gold mineralization. The overall range of delta(11)B values obtained for the tourmalinite and vein tourmalines is between - 15%. and -5 parts per thousand, with the tourmalinites failing at the low end of this range (-15 to -8 parts per thousand). Such values are typical for continental crust and inconsistent with a primary marine boron signature as expected from the submarine-exhalative model for the gold prospects. We conclude from this that tourmaline formed or recrystallized from crustal fluids related to the amphibolite-grade metamorphism which affected the Serra do Itaberaba Group and that gold deposition occurred syn- to post-peak metamorphism by phase immiscibility, as attested by fluid inclusions in Tapera Grande tourmalinite tourmaline and quartz. The vein-hosted tourmalines at Quartzito have isotopically variable boron signatures, with heavier delta(11)B values of -5 parts per thousand to -8 parts per thousand for acicular green tourmalines and lighter values (-15 parts per thousand to -7 parts per thousand for light blue, Ti-firee tourmaline from quartz-carbonate veins). We attribute the heavier boron to fluids derived from the volcano-sedimentary rocks of marine affinity whereas the lighter boron was contributed by crustal fluids related to the granitoids or metasediments in the continental crust. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Itaoca pluton consists of porphyritic monzogranite that intruded the upper crust into low-grade metasedimentary rocks of the Apiai Dornain (Ribeira Belt). Anisotropy of magnetic susceptibility and zircon U-Pb (Shrimp) geochronology were combined to determine pluton emplacement mechanisms and its chronology relative to the collision structures of the Paranapiacaba (Brasiliano II) orogenic system. Magnetic susceptibility ranges between 4 and 38 x 10(-3) SI, and thermomagnetic measurements indicate multidomain magnetite is the main carrier of anisotropy. The pluton shows an ""onion-skin"" structure roughly elongated to the northeast with its hinge zone including kilometer-wide roof-pendants. Magnetic lineations are variable in orientation in consistency with the dominant oblate symmetry of the magnetic fabric. A distinct NE-trending point-maxima, however, indicates the mean lineation is parallel to the stretching direction of the transpressive deformation that affected the regional host rocks. Prismatic zircon from the monzogranite, both in the core and in the finely-zoned margins, yielded an age of 623 +/- 10 Ma. These results suggest the magmatic fabric recorded the earlier strain increments of the regional shear deformation. It may correspond to the transition from continental arc to collision tectonics of the southern Ribeira Belt. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Ribeira belt in SE Brazil is a Neoproterozoic to Early Palaeozoic orogen, whose architecture and history is not yet fully understood. The depositional age of many of the sedimentary sequences in the Ribeira Belt remains unconstrained, and with debate concerning their depositional environment and tectonic setting. In this paper we present SHRIMP zircon U/Pb age constraints for one such problematic unit in the Ribeira Belt the lporanga Formation - and discuss the significance of this age with regards to the timing of Neoproterozoic glacial events in southeast Brazil. Using a felsic volcanic unit immediately under the lporanga Formation and granite cobbles from breccias in its basal parts a reconnaissance SHRIMP U/Pb zircon maximum depositional age of 580 Ma is assigned for the base of this unit. This age is marginally younger than the 625605 Ma ages for intrusions into the Lajeado and Ribeira subgroups, with which the lporanga Formation is in tectonic contact. This indicates that the Lajeado and Ribeira subgroups are not stratigraphically equivalent to the lporanga Formation, as thought previously by some workers. The maximum depositional age of 580 Ma also places a maximum time constraint on the tectonic juxtaposition of the lporanga Formation with other supracrustal units, and on the greenschist facies metamorphism and isoclinal folding that affected it. The potential glacial origin for the lporanga Formation, if correct, would place it in the late Ediacaran - provisionally equivalent to the Gaskiers glaciation. (c) 2007 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the Brasiliano-Pan-African Orogeny, West Gondwana formed by collisional processes around the Sao Francisco-Congo Craton. The Ribeira belt, in southeastern Brazil, resulted from northwestward collision (650-600 Ma), followed by large-scale northeast-southwest dextral strike-slip shear movements related to late-collisional escape tectonics (ca 600 Ma).In São Paulo State, three groups, also interpreted as terranes, are recognised in the Ribeira Belt, the Embu, Itapira and Sao Rogue Groups. The Embu and Itapira Groups are formed of sillimanite-gneisses, schists and migmatites intruded by Neoproterozoic calc-alkaline granitoids, all thrusted northwestward. The Sao Rogue Group is composed of metasediments and metavolcanics in greenschist-facies. Its deformation indicates a transpressional regime associated with tectonic escape. Sub-alkaline granites were emplaced in shallow levels during this regime. Microstructural studies along the Itu, Moreiras and Taxaquara Shear Zones demonstrate the coexistence of horizontal and Vertical displacement components during the transpressional regime. The vertical component is regarded as responsible for the lateral juxtaposition of different crustal levels. (C) 1999 Elsevier B.V. Limited. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A methodology to define favorable areas in petroleum and mineral exploration is applied, which consists in weighting the exploratory variables, in order to characterize their importance as exploration guides. The exploration data are spatially integrated in the selected area to establish the association between variables and deposits, and the relationships among distribution, topology, and indicator pattern of all variables. Two methods of statistical analysis were compared. The first one is the Weights of Evidence Modeling, a conditional probability approach (Agterberg, 1989a), and the second one is the Principal Components Analysis (Pan, 1993). In the conditional method, the favorability estimation is based on the probability of deposit and variable joint occurrence, with the weights being defined as natural logarithms of likelihood ratios. In the multivariate analysis, the cells which contain deposits are selected as control cells and the weights are determined by eigendecomposition, being represented by the coefficients of the eigenvector related to the system's largest eigenvalue. The two techniques of weighting and complementary procedures were tested on two case studies: 1. Recôncavo Basin, Northeast Brazil (for Petroleum) and 2. Itaiacoca Formation of Ribeira Belt, Southeast Brazil (for Pb-Zn Mississippi Valley Type deposits). The applied methodology proved to be easy to use and of great assistance to predict the favorability in large areas, particularly in the initial phase of exploration programs. © 1998 International Association for Mathematical Geology.