204 resultados para Rhizobium radiobacter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv. viciae 3841 contains six putative quaternary ammonium transporters (Qat), of the ABC family. Qat6 was strongly induced by hyperosmosis although the solute transported was not identified. All six systems were induced by the quaternary amines choline and glycine betaine. It was confirmed by microarray analysis of the genome that pRL100079-83 (qat6) is the most strongly upregulated transport system under osmotic stress, although other transporters and 104 genes are more than threefold upregulated. A range of quaternary ammonium compounds were tested but all failed to improve growth of strain 3841 under hyperosmotic stress. One Qat system (gbcXWV) was induced 20-fold by glycine betaine and choline and a Tn5::gbcW mutant was severely impaired for both transport and growth on these compounds, demonstrating that it is the principal system for their use as carbon and nitrogen sources. It transports glycine betaine and choline with a high affinity (apparent K-m, 168 and 294 nM, respectively).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the absence of added thiamine, Rhizobium leguminosarum bv. viciae strain 3841 does not grow in liquid medium and forms only "pin" colonies on agar plates, which contrasts with the good growth of Sinorhizobium meliloti 1021, Mesorhizobium loti 303099, and Rhizobium etli CFN42. These last three organisms have thiCOGE genes, which are essential for de novo thiamine synthesis. While R. leguminosarum bv. viciae 3841 lacks thiCOGE, it does have thiMED. Mutation of thiM prevented formation of pin colonies on agar plates lacking added thiamine, suggesting thiamine intermediates are normally present. The putative functions of ThiM, ThiE, and ThiD are 4-methyl-5-(beta-hydroxyethyl) thiazole (THZ) kinase, thiamine phosphate pyrophosphorylase, and 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) kinase, respectively. This suggests that a salvage pathway operates in R. leguminosarum, and addition of HMP and THZ enabled growth at the same rate as that enabled by thiamine in strain 3841 but elicited no growth in the thiM mutant (RU2459). There is a putative thi box sequence immediately upstream of the thiM, and a gfp-mut3.1 fusion to it revealed the presence of a promoter that is strongly repressed by thiamine. Using fluorescent microscopy and quantitative reverse transcription-PCR, it was shown that thiM is expressed in the rhizosphere of vetch and pea plants, indicating limitation for thiamine. Pea plants infected by RU2459 were not impaired in nodulation or nitrogen fixation. However, colonization of the pea rhizosphere by the thiM mutant was impaired relative to that of the wild type. Overall, the results show that a thiamine salvage pathway operates to enable growth of Rhizobium leguminosarum in the rhizosphere, allowing its survival when thiamine is limiting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Rhizobium leguminosarum is an alpha-proteobacterial N-2-fixing symbiont of legumes that has been the subject of more than a thousand publications. Genes for the symbiotic interaction with plants are well studied, but the adaptations that allow survival and growth in the soil environment are poorly understood. We have sequenced the genome of R. leguminosarum biovar viciae strain 3841. Results: The 7.75 Mb genome comprises a circular chromosome and six circular plasmids, with 61% G+C overall. All three rRNA operons and 52 tRNA genes are on the chromosome; essential protein-encoding genes are largely chromosomal, but most functional classes occur on plasmids as well. Of the 7,263 protein-encoding genes, 2,056 had orthologs in each of three related genomes ( Agrobacterium tumefaciens, Sinorhizobium meliloti, and Mesorhizobium loti), and these genes were overrepresented in the chromosome and had above average G+C. Most supported the rRNA-based phylogeny, confirming A. tumefaciens to be the closest among these relatives, but 347 genes were incompatible with this phylogeny; these were scattered throughout the genome but were over-represented on the plasmids. An unexpectedly large number of genes were shared by all three rhizobia but were missing from A. tumefaciens. Conclusion: Overall, the genome can be considered to have two main components: a 'core', which is higher in G+C, is mostly chromosomal, is shared with related organisms, and has a consistent phylogeny; and an 'accessory' component, which is sporadic in distribution, lower in G+C, and located on the plasmids and chromosomal islands. The accessory genome has a different nucleotide composition from the core despite a long history of coexistence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alanine dehydrogenase (AldA) is the principal enzyme with which pea bacteroids synthesize alanine de novo. In free-living culture, AMA activity is induced by carboxylic acids (succinate, malate, and pyruvate), although the best inducer is alanine. Measurement of the intracellular concentration of alanine showed that AldA contributes to net alanine synthesis in laboratory cultures. Divergently transcribed from aldA is an AsnC type regulator, aldR. Mutation of aldR prevents induction of AldA activity. Plasmid-borne gusA fusions showed that aldR is required for transcription of both aldA and aldR; hence, AldR is autoregulatory. However, plasmid fusions containing the aldA-aldR intergenic region could apparently titrate out AldR, sometimes resulting in a complete loss of AldA enzyme activity. Therefore, integrated aldR::gusA and aldA::gusA fusions, as well as Northern blotting, were used to confirm the induction of aldA activity. Both aldA and aldR were expressed in the II/III interzone and zone III of pea nodules. Overexpression of aldA in bacteroids did not alter the ability of pea plants to fix nitrogen, as measured by acetylene reduction, but caused a large reduction in the size and dry weight of plants. This suggests that overexpression of aldA impairs the ability of bacteroids to donate fixed nitrogen that the plant can productively assimilate. We propose that the role of AldA may be to balance the alanine level for optimal functioning of bacteroid metabolism rather than to synthesize alanine as the sole product of N-2 reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen fixation within legume nodules results from a complex metabolic exchange between bacteria of the family Rhizobiaciae and the plant host. Carbon is supplied to the differentiated bacterial cells, termed bacteroids, in the form of dicarboxylic acids to fuel nitrogen fixation. In exchange, fixed nitrogen is transferred to the plant. Both the bacteroid and the plant-derived peribacteroid membrane tightly regulate the exchange of metabolites. In the bacteroid oxidation of dicarboxylic acids via the TCA cycle occurs in an oxygen-limited environment. This restricts the TCA cycle at key points, such as the 2-oxoglutarate dehydrogenase complex, and requires that inputs of carbon and reductant are balanced with outputs from the TCA cycle. This may be achieved by metabolism through accessory pathways that can remove intermediates, reductant, or ATP from the cycle. These include synthesis of the carbon polymers PHB and glycogen and bypass pathways such as the recently identified 2-oxoglutarate decarboxylase reaction in soybean bacteroids. Recent labeling data have shown that bacteroids synthesize and secrete amino acids, which has led to controversy over the role of amino acids in nodule metabolism. Here we review bacteroid carbon metabolism in detail, evaluate the labeling studies that relate to amino acid metabolism by bacteroids, and place the work in context with the genome sequences of Mesorhizobium loti and Sinorhizobium meliloti. We also consider a wider range of metabolic pathways that are probably of great importance to rhizobia in the rhizosphere, during nodule initiation, infection thread development, and bacteroid development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biological reduction of atmospheric N-2 to ammonium (nitrogen fixation) provides about 65% of the biosphere's available nitrogen. Most of this ammonium is contributed by legume rhizobia symbioses(1), which are initiated by the infection of legume hosts by bacteria (rhizobia), resulting in formation of root nodules. Within the nodules, rhizobia are found as bacteroids, which perform the nitrogen fixation: to do this, they obtain sources of carbon and energy from the plant, in the form of dicarboxylic acids(2,3). It has been thought that, in return, bacteroids simply provide the plant with ammonium. But here we show that a more complex amino-acid cycle is essential for symbiotic nitrogen fixation by Rhizobium in pea nodules. The plant provides amino acids to the bacteroids, enabling them to shut down their ammonium assimilation. In return, bacteroids act like plant organelles to cycle amino acids back to the plant for asparagine synthesis. The mutual dependence of this exchange prevents the symbiosis being dominated by the plant, and provides a selective pressure for the evolution of mutualism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aims: To form nitrogen-fixing nodules on pea roots, Rhizobium leguminosarum biovar viciae must be competitive in the rhizosphere. Our aim was to identify genes important for rhizosphere fitness. Methods: Signature-tagged mutants were screened using microarrays to identify mutants reduced for growth in pea rhizospheres. Candidate mutants were assessed relative to controls for growth in minimal medium, growth in pea rhizospheres and for infection of peas in mixed inoculants. Mutated genes were identified by DNA sequencing and confirmed by transduction. Results: Of 5508 signature-tagged mutants, microarrays implicated 50 as having decreased rhizosphere fitness. Growth tests identified six mutants with rhizosphere-specific phenotypes. The mutation in one of the genes (araE) was in an arabinose catabolism operon and blocked growth on arabinose. The mutation in another gene (pcaM), encoding a predicted solute binding protein for protocatechuate and hydroxybenzoate uptake, decreased growth on protocatechuate. Both mutants were decreased for nodule infection competitiveness with mixed inoculants, but nodulated peas normally when inoculated alone. Other mutants with similar phenotypes had mutations predicted to affect secondary metabolism. Conclusions: Catabolism of arabinose and protocatechuate in the pea rhizosphere is important for competitiveness of R.l. viciae. Other genes predicted to be involved in secondary metabolism are also important.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The rhizosphere is the microbe-rich zone around plant roots and is a key determinant of the biosphere's productivity. Comparative transcriptomics was used to investigate general and plant-specific adaptations during rhizosphere colonization. Rhizobium leguminosarum biovar viciae was grown in the rhizospheres of pea (its legume nodulation host), alfalfa (a non-host legume) and sugar beet (non-legume). Gene expression data were compared to metabolic and transportome maps to understand adaptation to the rhizosphere. Results Carbon metabolism was dominated by organic acids, with a strong bias towards aromatic amino acids, C1 and C2 compounds. This was confirmed by induction of the glyoxylate cycle required for C2 metabolism and gluconeogenesis in all rhizospheres. Gluconeogenesis is repressed in R. leguminosarum by sugars, suggesting that although numerous sugar and putative complex carbohydrate transport systems are induced in the rhizosphere, they are less important carbon sources than organic acids. A common core of rhizosphere-induced genes was identified, of which 66% are of unknown function. Many genes were induced in the rhizosphere of the legumes, but not sugar beet, and several were plant specific. The plasmid pRL8 can be considered pea rhizosphere specific, enabling adaptation of R. leguminosarum to its host. Mutation of many of the up-regulated genes reduced competitiveness for pea rhizosphere colonization, while two genes specifically up-regulated in the pea rhizosphere reduced colonization of the pea but not alfalfa rhizosphere. Conclusions Comparative transcriptome analysis has enabled differentiation between factors conserved across plants for rhizosphere colonization as well as identification of exquisite specific adaptation to host plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv. trifolii is the effective nitrogen fixing microsymbiont of a diverse range of annual and perennial Trifolium (clover) species. Strain WSM2304 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from Trifolium polymorphum in Uruguay in 1998. This microsymbiont predominated in the perennial grasslands of Glencoe Research Station, in Uruguay, to competitively nodulate its host, and fix atmospheric nitrogen. Here we describe the basic features of WSM2304, together with the complete genome sequence, and annotation. This is the first completed genome sequence for a nitrogen fixing microsymbiont of a clover species from the American centre of origin. We reveal that its genome size is 6,872,702 bp encoding 6,643 protein-coding genes and 62 RNA only encoding genes. This multipartite genome was found to contain 5 distinct replicons; a chromosome of size 4,537,948 bp and four circular plasmids of size 4,537,948, 1,266,105, 501,946, 308,747 and 257,956 bp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv trifolii is a soil-inhabiting bacterium that that has the capacity to be an effective nitrogen fixing microsymbiont of a diverse range of annual Trifolium (clover) species. Strain WSM1325 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from root nodules collected in 1993 from the Greek Island of Serifos. WSM1325 is manufactured commercially in Australia as an inoculant for a broad range of annual clovers of Mediterranean origin due to its superior attributes of saprophytic competence, nitrogen fixation and acid-tolerance. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence for a microsymbiont of annual clovers. We reveal that its genome size is 7,418,122 bp encoding 7,232 protein-coding genes and 61 RNA-only encoding genes. This multipartite genome contains 6 distinct replicons; a chromosome of size 4,767,043 bp and 5 plasmids of size 828,924, 660,973, 516,088, 350,312 and 294,782 bp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv. trifolii SRDI565 (syn. N8-J) is an aerobic,motile, Gram-negative, non-spore-forming rod. SRDI565 was isolated from anodule recovered from the roots of the annual clover Trifolium subterraneum subsp. subterraneum grown in thegreenhouse and inoculated with soil collected from New South Wales, Australia. SRDI565has a broad host range for nodulation within the clover genus, however N2-fixationis sub-optimal with some Trifoliumspecies and ineffective with others. Here we describe the features of R. leguminosarum bv. trifolii strain SRDI565, together with genomesequence information and annotation. The 6,905,599 bp high-quality-draft genomeis arranged into 7 scaffolds of 7 contigs, contains 6,750 protein-coding genesand 86 RNA-only encoding genes, and is one of 100 rhizobial genomes sequencedas part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia forBacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv. trifolii SRDI943(syn. V2-2) is an aerobic, motile, Gram-negative, non-spore-forming rod. SRDI943was isolated from a nodule recovered from the roots of the annual clover Trifoliummichelianum savi cv. paradanathat had been inoculated with a soil collected from a mixed pasture in Victoria, Australia. SRDI943 has a broadhost range for nodulation within the clover genus, however N2-fixationis sub-optimal (20-54% of reference strain WSM1325) on T. subterraneum spp.Here we describe the features of R. leguminosarum bv. trifolii strain SRDI943, together with genomesequence information and annotation. The 7,412,387 bp high-quality-draft genomeis arranged into 5 scaffolds of 5 contigs, contains 7,317 protein-coding genesand 89 RNA-only encoding genes, and is one of 100 rhizobial genomes sequencedas part of the DOE Joint Genome Institute 2010 Genomic Encylopedia for Bacteriaand Archaea-Root Nodule Bacteria (GEBA-RNB) project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)