977 resultados para Reward system
Resumo:
A wide range of essential reasoning tasks rely on contradiction identification, a cornerstone of human rationality, communication and debate founded on the inversion of the logical operators "Every" and "Some." A high-density electroencephalographic (EEG) study was performed in 11 normal young adults. The cerebral network involved in the identification of contradiction included the orbito-frontal and anterior-cingulate cortices and the temporo-polar cortices. The event-related dynamic of this network showed an early negative deflection lasting 500 ms after sentence presentation. This was followed by a positive deflection lasting 1.5 s, which was different for the two logical operators. A lesser degree of network activation (either in neuron number or their level of phase locking or both) occurred while processing statements with "Some," suggesting that this was a relatively simpler scenario with one example to be figured out, instead of the many examples or the absence of a counterexample searched for while processing statements with "Every." A self-generated reward system seemed to resonate the recruited circuitry when the contradictory task is successfully completed.
Resumo:
We demonstrate that task-irrelevant somatic activity influences intertemporal decision making: Arm movements associated with approach (arm flexion), rather than avoidance (arm extension), instigate present-biased preferences. The effect is moderated by the sensitivity of the general reward system and, owing to learning principles, restricted to arm positions of the dominant hand.
Resumo:
Background: 'Neuromarketing' is a term that has often been used in the media in recent years. These public discussions have generally centered around potential ethical aspects and the public fear of negative consequences for society in general, and consumers in particular. However, positive contributions to the scientific discourse from developing a biological model that tries to explain context-situated human behavior such as consumption have often been neglected. We argue for a differentiated terminology, naming commercial applications of neuroscientific methods 'neuromarketing' and scientific ones 'consumer neuroscience'. While marketing scholars have eagerly integrated neuroscientific evidence into their theoretical framework, neurology has only recently started to draw its attention to the results of consumer neuroscience.Discussion: In this paper we address key research topics of consumer neuroscience that we think are of interest for neurologists; namely the reward system, trust and ethical issues. We argue that there are overlapping research topics in neurology and consumer neuroscience where both sides can profit from collaboration. Further, neurologists joining the public discussion of ethical issues surrounding neuromarketing and consumer neuroscience could contribute standards and experience gained in clinical research.Summary: We identify the following areas where consumer neuroscience could contribute to the field of neurology:. First, studies using game paradigms could help to gain further insights into the underlying pathophysiology of pathological gambling in Parkinson's disease, frontotemporal dementia, epilepsy, and Huntington's disease.Second, we identify compulsive buying as a common interest in neurology and consumer neuroscience. Paradigms commonly used in consumer neuroscience could be applied to patients suffering from Parkinson's disease and frontotemporal dementia to advance knowledge of this important behavioral symptom.Third, trust research in the medical context lacks empirical behavioral and neuroscientific evidence. Neurologists entering this field of research could profit from the extensive knowledge of the biological foundation of trust that scientists in economically-orientated neurosciences have gained.Fourth, neurologists could contribute significantly to the ethical debate about invasive methods in neuromarketing and consumer neuroscience. Further, neurologists should investigate biological and behavioral reactions of neurological patients to marketing and advertising measures, as they could show special consumer vulnerability and be subject to target marketing. © 2013 Javor et al.; licensee BioMed Central Ltd.
Resumo:
Conventional taught learning practices often experience difficulties in keeping students motivated and engaged. Video games, however, are very successful at sustaining high levels of motivation and engagement through a set of tasks for hours without apparent loss of focus. In addition, gamers solve complex problems within a gaming environment without feeling fatigue or frustration, as they would typically do with a comparable learning task. Based on this notion, the academic community is keen on exploring methods that can deliver deep learner engagement and has shown increased interest in adopting gamification – the integration of gaming elements, mechanics, and frameworks into non-game situations and scenarios – as a means to increase student engagement and improve information retention. Its effectiveness when applied to education has been debatable though, as attempts have generally been restricted to one-dimensional approaches such as transposing a trivial reward system onto existing teaching materials and/or assessments. Nevertheless, a gamified, multi-dimensional, problem-based learning approach can yield improved results even when applied to a very complex and traditionally dry task like the teaching of computer programming, as shown in this paper. The presented quasi-experimental study used a combination of instructor feedback, real time sequence of scored quizzes, and live coding to deliver a fully interactive learning experience. More specifically, the “Kahoot!” Classroom Response System (CRS), the classroom version of the TV game show “Who Wants To Be A Millionaire?”, and Codecademy’s interactive platform formed the basis for a learning model which was applied to an entry-level Python programming course. Students were thus allowed to experience multiple interlocking methods similar to those commonly found in a top quality game experience. To assess gamification’s impact on learning, empirical data from the gamified group were compared to those from a control group who was taught through a traditional learning approach, similar to the one which had been used during previous cohorts. Despite this being a relatively small-scale study, the results and findings for a number of key metrics, including attendance, downloading of course material, and final grades, were encouraging and proved that the gamified approach was motivating and enriching for both students and instructors.
Resumo:
Cortical motor simulation supports the understanding of others' actions and intentions. This mechanism is thought to rely on the mirror neuron system (MNS), a brain network that is active both during action execution and observation. Indirect evidence suggests that alpha/beta suppression, an electroencephalographic (EEG) index of MNS activity, is modulated by reward. In this study we aimed to test the plasticity of the MNS by directly investigating the link between alpha/beta suppression and reward. 40 individuals from a general population sample took part in an evaluative conditioning experiment, where different neutral faces were associated with high or low reward values. In the test phase, EEG was recorded while participants viewed videoclips of happy expressions made by the conditioned faces. Alpha/beta suppression (identified using event-related desynchronisation of specific independent components) in response to rewarding faces was found to be greater than for non-rewarding faces. This result provides a mechanistic insight into the plasticity of the MNS and, more generally, into the role of reward in modulating physiological responses linked to empathy.
Resumo:
The gastric-derived orexigenic peptide ghrelin affects brain circuits involved in energy balance as well as in reward. Indeed, ghrelin activates an important reward circuit involved in natural- as well as drug-induced reward, the cholinergic-dopaminergic reward link. It has been hypothesized that there is a common reward mechanism for alcohol and sweet substances in both animals and humans. Alcohol dependent individuals have higher craving for sweets than do healthy controls and the hedonic response to sweet taste may, at least in part, depend on genetic factors. Rat selectively bred for high sucrose intake have higher alcohol consumption than non-sucrose preferring rats and vice versa. In the present study a group of alcohol-consuming individuals selected from a population cohort was investigated for genetic variants of the ghrelin signalling system in relation to both their alcohol and sucrose consumption. Moreover, the effects of GHS-R1A antagonism on voluntary sucrose- intake and operant self-administration, as well as saccharin intake were investigated in preclinical studies using rodents. The effects of peripheral grelin administration on sucrose intake were also examined. Here we found associations with the ghrelin gene haplotypes and increased sucrose consumption, and a trend for the same association was seen in the high alcohol consumers. The preclinical data show that a GHS-R1A antagonist reduces the intake and self-administration of sucrose in rats as well as saccharin intake in mice. Further, ghrelin increases the intake of sucrose in rats. Collectively, our data provide a clear indication that the GHS-R1A antagonists reduces and ghrelin increases the intake of rewarding substances and hence, the central ghrelin signalling system provides a novel target for the development of drug strategies to treat addictive behaviours. © 2011 Landgren et al.
Resumo:
Using Gray and McNaughton’s revised RST, this study investigated the extent to which the Behavioural Approach System (BAS) and the Fight-Flight-Freeze System (FFFS) influence the processing of gain-framed and loss-framed road safety messages and subsequent message acceptance. It was predicted that stronger BAS sensitivity and FFFS sensitivity would be associated with greater processing and acceptance of the gain-framed messages and loss-framed messages, respectively. Young drivers (N = 80, aged 17–25 years) viewed one of four road safety messages and completed a lexical decision task to assess message processing. Both self-report (e.g., Corr-Cooper RST-PQ) and behavioural measures (i.e., CARROT and Q-Task) were used to assess BAS and FFFS traits. Message acceptance was measured via self-report ratings of message effectiveness, behavioural intentions, attitudes and subsequent driving behaviour. The results are discussed in the context of the effect that differences in reward and punishment sensitivities may have on message processing and message acceptance.
Resumo:
Learning automata arranged in a two-level hierarchy are considered. The automata operate in a stationary random environment and update their action probabilities according to the linear-reward- -penalty algorithm at each level. Unlike some hierarchical systems previously proposed, no information transfer exists from one level to another, and yet the hierarchy possesses good convergence properties. Using weak-convergence concepts it is shown that for large time and small values of parameters in the algorithm, the evolution of the optimal path probability can be represented by a diffusion whose parameters can be computed explicitly.
Resumo:
Recent experiments have shown that spike-timing-dependent plasticity is influenced by neuromodulation. We derive theoretical conditions for successful learning of reward-related behavior for a large class of learning rules where Hebbian synaptic plasticity is conditioned on a global modulatory factor signaling reward. We show that all learning rules in this class can be separated into a term that captures the covariance of neuronal firing and reward and a second term that presents the influence of unsupervised learning. The unsupervised term, which is, in general, detrimental for reward-based learning, can be suppressed if the neuromodulatory signal encodes the difference between the reward and the expected reward-but only if the expected reward is calculated for each task and stimulus separately. If several tasks are to be learned simultaneously, the nervous system needs an internal critic that is able to predict the expected reward for arbitrary stimuli. We show that, with a critic, reward-modulated spike-timing-dependent plasticity is capable of learning motor trajectories with a temporal resolution of tens of milliseconds. The relation to temporal difference learning, the relevance of block-based learning paradigms, and the limitations of learning with a critic are discussed.
Resumo:
Before choosing, it helps to know both the expected value signaled by a predictive cue and the associated uncertainty that the reward will be forthcoming. Recently, Fiorillo et al. (2003) found the dopamine (DA) neurons of the SNc exhibit sustained responses related to the uncertainty that a cure will be followed by reward, in addition to phasic responses related to reward prediction errors (RPEs). This suggests that cue-dependent anticipations of the timing, magnitude, and uncertainty of rewards are learned and reflected in components of the DA signals broadcast by SNc neurons. What is the minimal local circuit model that can explain such multifaceted reward-related learning? A new computational model shows how learned uncertainty responses emerge robustly on single trial along with phasic RPE responses, such that both types of DA responses exhibit the empirically observed dependence on conditional probability, expected value of reward, and time since onset of the reward-predicting cue. The model includes three major pathways for computing: immediate expected values of cures, timed predictions of reward magnitudes (and RPEs), and the uncertainty associated with these predictions. The first two model pathways refine those previously modeled by Brown et al. (1999). A third, newly modeled, pathway is formed by medium spiny projection neurons (MSPNs) of the matrix compartment of the striatum, whose axons co-release GABA and a neuropeptide, substance P, both at synapses with GABAergic neurons in the SNr and with the dendrites (in SNr) of DA neurons whose somas are in ventral SNc. Co-release enables efficient computation of sustained DA uncertainty responses that are a non-monotonic function of the conditonal probability that a reward will follow the cue. The new model's incorporation of a striatal microcircuit allowed it to reveals that variability in striatal cholinergic transmission can explain observed difference, between monkeys, in the amplitutude of the non-monotonic uncertainty function. Involvement of matriceal MSPNs and striatal cholinergic transmission implpies a relation between uncertainty in the cue-reward contigency and action-selection functions of the basal ganglia. The model synthesizes anatomical, electrophysiological and behavioral data regarding the midbrain DA system in a novel way, by relating the ability to compute uncertainty, in parallel with other aspects of reward contingencies, to the unique distribution of SP inputs in ventral SN.
Resumo:
Scholarly publishing, and scholarly communication more generally, are based on patterns established over many decades and even centuries. Some of these patterns are clearly valuable and intimately related to core values of the academy, but others were based on the exigencies of the past, and new opportunities have brought into question whether it makes sense to persist in supporting old models. New technologies and new publishing models raise the question of how we should fund and operate scholarly publishing and scholarly communication in the future, moving away from a scarcity model based on the exchange of physical goods that restricts access to scholarly literature unless a market-based exchange takes place. This essay describes emerging models that attempt to shift scholarly communication to a more open-access and mission-based approach and that try to retain control of scholarship by academics and the institutions and scholarly societies that support them. It explores changing practices for funding scholarly journals and changing services provided by academic libraries, changes instituted with the end goal of providing more access to more readers, stimulating new scholarship, and removing inefficiencies from a system ready for change. © 2014 by the American Anthropological Association.
Resumo:
Contrary to the widespread belief that people are positively motivated by reward incentives, some studies have shown that performance-based extrinsic reward can actually undermine a person's intrinsic motivation to engage in a task. This “undermining effect” has timely practical implications, given the burgeoning of performance-based incentive systems in contemporary society. It also presents a theoretical challenge for economic and reinforcement learning theories, which tend to assume that monetary incentives monotonically increase motivation. Despite the practical and theoretical importance of this provocative phenomenon, however, little is known about its neural basis. Herein we induced the behavioral undermining effect using a newly developed task, and we tracked its neural correlates using functional MRI. Our results show that performance-based monetary reward indeed undermines intrinsic motivation, as assessed by the number of voluntary engagements in the task. We found that activity in the anterior striatum and the prefrontal areas decreased along with this behavioral undermining effect. These findings suggest that the corticobasal ganglia valuation system underlies the undermining effect through the integration of extrinsic reward value and intrinsic task value.
Resumo:
Disturbances in reward processing have been implicated in bulimia nervosa (BN). Abnormalities in processing reward-related stimuli might be linked to dysfunctions of the catecholaminergic neurotransmitter system, but findings have been inconclusive. A powerful way to investigate the relationship between catecholaminergic function and behavior is to examine behavioral changes in response to experimental catecholamine depletion (CD). The purpose of this study was to uncover putative catecholaminergic dysfunction in remitted subjects with BN who performed a reinforcement-learning task after CD. CD was achieved by oral alpha-methyl-para-tyrosine (AMPT) in 19 unmedicated female subjects with remitted BN (rBN) and 28 demographically matched healthy female controls (HC). Sham depletion administered identical capsules containing diphenhydramine. The study design consisted of a randomized, double-blind, placebo-controlled crossover, single-site experimental trial. The main outcome measures were reward learning in a probabilistic reward task analyzed using signal-detection theory. Secondary outcome measures included self-report assessments, including the Eating Disorder Examination-Questionnaire. Relative to healthy controls, rBN subjects were characterized by blunted reward learning in the AMPT-but not in placebo-condition. Highlighting the specificity of these findings, groups did not differ in their ability to perceptually distinguish between stimuli. Increased CD-induced anhedonic (but not eating disorder) symptoms were associated with a reduced response bias toward a more frequently rewarded stimulus. In conclusion, under CD, rBN subjects showed reduced reward learning compared with healthy control subjects. These deficits uncover disturbance of the central reward processing systems in rBN related to altered brain catecholamine levels, which might reflect a trait-like deficit increasing vulnerability to BN.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06