972 resultados para Reticulum endoplasmique
Resumo:
Many inflammatory and infectious diseases are characterized by the activation of signaling pathways steaming from the endoplasmic reticulum (ER). These pathways, primarily associated with loss of ER homeostasis, are emerging as key regulators of inflammation and infection. Recent advances shed light on the mechanisms linking ER-stress and immune responses.
Resumo:
Background: Annotations of completely sequenced genomes reveal that nearly half of the genes identified are of unknown function, and that some belong to uncharacterized gene families. To help resolve such issues, information can be obtained from the comparative analysis of homologous genes in model organisms. Results: While characterizing genes from the retinitis pigmentosa locus RP26 at 2q31-q33, we have identified a new gene, ORMDL1, that belongs to a novel gene family comprising three genes in humans (ORMDL1, ORMDL2 and ORMDL3), and homologs in yeast, microsporidia, plants, Drosophila, urochordates and vertebrates. The human genes are expressed ubiquitously in adult and fetal tissues. The Drosophila ORMDL homolog is also expressed throughout embryonic and larval stages, particularly in ectodermally derived tissues. The ORMDL genes encode transmembrane proteins anchored in the endoplasmic reticulum (ER). Double knockout of the two Saccharomyces cerevisiae homologs leads to decreased growth rate and greater sensitivity to tunicamycin and dithiothreitol. Yeast mutants can be rescued by human ORMDL homologs. Conclusions: From protein sequence comparisons we have defined a novel gene family, not previously recognized because of the absence of a characterized functional signature. The sequence conservation of this family from yeast to vertebrates, the maintenance of duplicate copies in different lineages, the ubiquitous pattern of expression in human and Drosophila, the partial functional redundancy of the yeast homologs and phenotypic rescue by the human homologs, strongly support functional conservation. Subcellular localization and the response of yeast mutants to specific agents point to the involvement of ORMDL in protein folding in the ER.
Resumo:
Summary The CD4 molecule plays a key role in AIDS pathogenesis, it is required for entry of the virus into permissive cells and its subsequent down-modulation of the cell surface is a hallmark of HN-1 infected cells. The virus encodes no less than three proteins that participate in this process: Nef, Vpu and Env. Vpu protein interacts with CD4 within the endoplasmic reticulum of infected cells, where it targets CD4 for degradation through the interaction with a cellular protein named ß-TrCP1. This F-box protein functions as the substrate recognition subunit of the SCF ß-Trcr E3 ubiquitin ligase, which normally induce the ubiquitination and subsequent degradation of various proteins such as ß-catenin and IxBa. Mammals possess a homologue of ß-TrCP1, HOS, also named ß-TrCP2 which has a cytoplasmic subcellular distribution. Structural analysis of the ligand-binding domain of both homologues shows striking surface similarities. Both F-box proteins have a redundant role in a number of cellular processes; however the potential role of ß-TrCP2 in HIV-1 infected cells has not been evaluated. In the present study, we assessed the existence of génetic variants of BRTC, encoding ß-TrCP1, and evaluated whether these variants would affect CD4 down-modulation. Additionally, we determined whether ß-TrCP2 shares with its homologue structural and functional properties that would allow it to bind Vpu, modulate CD4 expression, and thus participate in HN-1 pathogenesis. We identified a single nucleotide polymorphism present in the human population with an allelic frequency of 0.03 that leads to the substitution of alanine 507 by a serine. However, we showed by transient transfection in HeLa CD4+ cells that this variant behaves as ß-TrCP1 with respect to CD4 down-modulation. We established transient expression systems in HeLa CD4+ cells to test whether ß-TrCP2 is implicated in Vpu-mediated CD4 down-modulation. We show by coimmunoprecipitation experiments that ß-TrCP2 binds Vpu and is able to induce CD4 down-modulation as efficiently as ß-TrCP1. In two different cell lines, HeLa CD4+ and Jurkat, Vpu-mediated CD4 down-modulation could not be completely reversed through the silencing of endogenous ß-TrCP 1 or ß-TrCP2 individually, but required both genes to be silenced simultaneously. We evaluated the role of ß-TrCP1 and ß-TrCP2 in HIV-1 life cycle using silencing prior to actual viral infection. Both ß-TrCP1 and ß-TrCP2 contributed to CD4 down-modulation during aone-cycle viral infection iri Ghost cells. In addition, the combined silencing of both homologues in the absence of env and nef reversed CD4 down-modulation, showing that ß-TrCP 1 and ß-TrCP2 represent the main and additive effectors of HIV-1 encoded Vpu. In addition, we showed that silencing of ß-TrCPI but not ß-TrCP2 induced a decrease of HIV-1 LTR-driven expression. In a transient transfection system with Tat and a LTR luciferase reporter, both homologues modulated LTR-driven expression. The present study revealed that ß-TrCP2 represents a novel protein participating in HIV-1 cycle and complete comprehension of the complex interplay occurring between the two F-Box will improve our understanding of HIV-1 infection. Résumé La molécule CD4 joue un rôle clef dans la pathogenèse du SIDA ; elle est requise pour l'entrée du virus dans les cellules permissives et la diminution de sa concentration au niveau de la surface cellulaire est une importante caractéristique des cellules infectées par le VIH-1. Le virus encode pas moins de trois protéines qui participent à ce processus Nef, Vpu et Env. La protéine Vpu lie CD4 au niveau du réticulum endoplasmique et induit sa dégradation en interagissant avec une protéine cellulaire nommée ß-TrCP 1. Cette protéine de type F-Box est une sous unité du complexe ubiquitine-ligase E3 SCFß-TrCP. Elle permet la reconnaissance du substrat par le complexe qui induit l'ubiquitination et la subséquente dégradation de diverses protéines cellulaires comme la ß-catenin ou IκBα. Les mammifères possèdent un homologue à ß-TrCP1appelé ß-TrCP2 (ou HOS). L'analyse comparative du domaine permettant la reconnaissance des substrats des deux homologues montre de frappantes similarités. Le rôle de ß-TrCP2 dans le cycle viral du VIH-1 n'a pas encore été évalué. Lors de cette étude, nous avons recherché l'existence de variants génétique de BTRC (codant pour ß-TrCP1) et nous avons évalué si ces variants pourraient affecter la dégradation des molécules CD4 induite par le virus. Nous avons ainsi identifié un polymorphisme présent dans la population humaine avec une fréquence allélique de 0.03 qui consiste en une substitution de l'alanine 507 par une sérine. Nous avons cependant montré par transfection dans des cellules HeLa CD4+ que ce variant se comporte comme ß-TrCP 1 en ce qui concerne la modulation de CD4. De plus, nous avons déterminé si ß-TrCP2 partageait avec son homologue des propriétés structurelles et fonctionnelles qui lui permettraient de lier Vpu, moduler la concentration de CD4 et ainsi prendre part à la pathogenèse du SIDA. Pour ce faire, nous avons établi un système d'expression temporaire dans des cellules HeLa CD4+. Par co-immunoprécipitation, nous avons montré que ß-TrCP2 lie Vpu et est capable d'induire la dégradation de CD4 aussi efficacement que ß-TrCP1. Dans deux différentes lignées cellulaires, HeLa CD4+ et Jurkat, la dégradation de CD4 n'a pu être complètement inhibée par le silencing individuel de ß-TrCP 1 ou ß-TrCP2, mais nécessitait le silencing simultané des 2 gènes. Nous avons évalué le rôle des deux homologues dans le cycle viral du VIH-1 en infectant des cellules Ghost avec le virus après avoir effectué un silencing des deux protéines. Nous avons ainsi montré que ß-TrCP 1 et ß-TrCP2 contribuent de manière additive à la dégradation de CD4 induite par une infection du VIH-1. Le silencing combiné des deux homologues inhiba complètement cette dégradation en l'absence de env et nef, prouvant qu'aucune autre voie ne participe à ce processus: En outre, nous avons montré que le silencing de ß-TrCP 1 mais pas celui de ß-TrCP2 induisait une diminution de l'expression virale sous contrôle du LTR. Nous n'avons cependant pas été en mesure de reconstituer cet effet en exprimant Tat et un gène reporteur sous contrôle du LTR dans des cellules HeLa CD4+. Le présent travail révèle que ß-TrCP2 représente une nouvelle protéine participant dans le cycle viral du VIH-1. Une complète compréhension de l'effet de chacun des deux homologues sur le cycle viral permettra d'améliorer notre compréhension de l'infection par le VIH-1.
Resumo:
The endoplasmic reticulum (ER) orchestrates the production of membrane-bound and secreted proteins. However, its capacity to process the synthesis and folding of protein is limited. Protein overload and the accumulation of misfolded proteins in the ER trigger an adaptive response known as the ER-stress response that is mediated by specific ER-anchored signaling pathways. This response regulates cell functions aimed at restoring cellular homeostasis or at promoting apoptosis of irreparably damaged cells. Activation or deregulation of ER-signaling pathways has been associated with various diseases including cancer. Here we discuss how tumors engage ER-signaling pathways to promote tumorigenesis and how manipulation of this process by anticancer drugs may contribute to cancer treatment.
Resumo:
BACKGROUND: Chronic endoplasmic reticulum (ER) stress contributes to the apoptotic cell death in the myocardium, thereby playing a critical role in the development of cardiomyopathy. ER stress has been reported to be induced after high-fat diet feeding in mice and also after saturated fatty acid treatment in vitro. Therefore, since several studies have shown that peroxisome proliferator-activated receptor (PPAR)β/δ inhibits ER stress, the main goal of this study consisted in investigating whether activation of this nuclear receptor was able to prevent lipid-induced ER stress in cardiac cells. METHODS AND RESULTS: Wild-type and transgenic mice with reduced PPARβ/δ expression were fed a standard diet or a high-fat diet for two months. For in vitro studies, a cardiomyocyte cell line of human origin, AC16, was treated with palmitate and the PPARβ/δ agonist GW501516. Our results demonstrate that palmitate induced ER stress in AC16 cells, a fact which was prevented after PPARβ/δ activation with GW501516. Interestingly, the effect of GW501516 on ER stress occurred in an AMPK-independent manner. The most striking result of this study is that GW501516 treatment also upregulated the protein levels of beclin 1 and LC3II, two well-known markers of autophagy. In accordance with this, feeding on a high-fat diet or suppression of PPARβ/δ in knockout mice induced ER stress in the heart. Moreover, PPARβ/δ knockout mice also displayed a reduction in autophagic markers. CONCLUSION: Our data indicate that PPARβ/δ activation might be useful to prevent the harmful effects of ER stress induced by saturated fatty acids in the heart by inducing autophagy.
Resumo:
Elevated circulating concentrations in modified LDL-cholesterol particles (e.g. oxidised LDL) and low levels in HDL increase not only the risk for diabetic patients to develop cardiovascular diseases but also may contribute to development and progression of diabetes by directly having adverse effects on β-cells. Chronic exposure of β-cells to 2 mM human oxidised LDL-cholesterol (oxLDL) increases the rate of apoptosis, reduce insulin biosynthesis and the secretory capacity of the cells in response to nutrients. In line with the protective role, HDL efficiently antagonised the harmful effects of ox- LDL, suggesting that low levels of HDL would be inefficient to protect β-cells against oxLDL attack in patients. Activation of endoplasmic reticulum (ER) stress is pointed out to contribute to β-cell dysfunction elicited by environmental stressors. In this study we investigated whether activation of ER stress is required for oxLDL to mediate detrimental effects on β-cells and we tested the potential antagonist properties of HDL: The mouse MIN6 insulin-secreting cells were cultured with 2 mM of LDL-cholesterol preparation (native or in vitro oxidized) in the presence or absence of 1 mM of HDL-cholesterol or the ER stress inhibitor 4-phenylbutyrate (4-PBA): Prolonged exposure of MIN6 cells to 2 mM oxLDL-cholesterol for 48 hours led to an increase in expression of ER stress markers such as ATF4, CHOP and p58 and stimulated the splicing of XBP-1 whereas, induction of these markers was not observable in the cells cultured with native LDL. Treatment of the cells with the 4-PBA chemical chaperone molecule efficiently blocked activation of the ER stress markers induced by oxLDL. The latter mediates β-cell dysfunction and apoptosis by diminishing the expression of islet brain 1 (IB1) and Bcl2. The levels of these two proteins were preserved in the cells that were co-treated with oxLDL and the 4-PBA. Consistent with this result we found that blockade of ER stress activation alleviated the loss of insulin synthesis and abolished apoptosis evoked by oxLDL. However incubation of the cells with 4-PBA did not prevent impairment of insulin secretion elicited by oxLDL, indicating that ER stress is not responsible for the oxLDL-mediated defect of insulin secretion. Co-incubation of the cells with HDL mimicked the effects of 4-PBA on the expression of IB1 and Blc2 and thereby counteracted oxLDL attacks on insulin synthesis and cell survivals. We found that HDL efficiently inhibited activation of the ER stress mediated by oxLDL: These data highlight the contribution of the ER stress in the defects of insulin synthesis and cell survivals induced by oxLDL and emphasize the potent role of HDL to counter activation of the oxLDL-mediated ER-stress activation:
Resumo:
Summary Prevalence of type 2 diabetes is increasing worldwide at alarming rates, probably secondarily to that of obesity. As type 2 diabetes is characterized by blood hyperglycemia, controlling glucose entry into tissues from the bloodstream is key to maintain glycemia within acceptable ranges. In this context, several glucose transporter isoforms have been cloned recently and some of them have appeared to play important regulatory roles. Better characterizing two of them (GLUT8 and GLUT9) was the purpose of my work. The first part of my work was focused on GLUT8, which is mainly expressed in the brain and is able to transport glucose with high affinity. GLUT8 is retained intracellularly at basal state depending on an N-terminal dileucine motif, thus implying that cell surface expression may be induced by extracellular triggers. In this regard, I was interested in better defining GLUT8 subcellular localization at basal state and in finding signals promoting its translocation, using an adenoviral vector expressing a myc epitope-tagged version of the transporter, thus allowing expression and detection of cell-surface GLUT8 in primary hippocampal neurons and PC 12 cells. This tool enabled me to found out that GLUT8 resides in a unique compartment different from lysosomes, endoplasmic reticulum, endosomes and the Golgi. In addition, absence of GLUT8 translocation following pharmacological activation of several signalling pathways suggests that GLUT8 does not ever translocate to the cell surface, but would rather fulfill its role in its unique intracellular compartment. The second part of my work was focused on GLUT9, which -contrarily to GLUT8 - is unable to transport glucose, but retains the ability to bind glucose-derived cross-linker molecules, thereby suggesting that it may be a glucose sensor rather than a true glucose transporter. The aim of the project was thus to define if GLUT9 triggers intracellular signals when activated. Therefore, adenoviral vectors expressing GLUTS were used to infect both ßpancreatic and liver-derived cell lines, as GLUTS is endogenously expressed in the liver. Comparison of gene expression between cells infected with the GLUTS-expressing adenovirus and cells infected with a GFP-expressing control adenovirus ended up in the identification of the transcription factor HNF4α as being upregulated in aGLUT9-dependent manner. Résumé La prévalence du diabète de type 2 augmente de façon alarmante dans le monde entier, probablement secondairement à celle de l'obésité. Le diabète de type 2 étant caractérisé par une glycémie sanguine élevée, l'entrée du glucose dans les tissus depuis la circulation sanguine constitue un point de contrôle important pour maintenir la glycémie à des valeurs acceptables. Dans ce contexte, plusieurs isoformes de transporteurs au glucose ont été clonées récemment et certaines d'entre elles sont apparues comme jouant d'importants rôles régulateurs. Mieux caractériser deux d'entre elles (GLUT8 et GLUT9) était le but de mon travail. La première partie de mon travail a été centrée sur GLUT8, qui est exprimé principalement dans le cerveau et qui peut transporter le glucose avec une haute affinité. GLUT8 est retenu intracellulairement à l'état basal de façon dépendante d'un motif dileucine N-terminal, ce qui implique que son expression à la surface cellulaire pourrait être induite par des stimuli extracellulaires. Dans cette optique, je me suis intéressé à mieux définir la localisation subcellulaire de GLUT8 à l'état basal et à trouver des signaux activant sa translocation, en utilisant comme outil un vecteur adénoviral exprimant une version marquée (tag myc) du transporteur, me permettant ainsi d'exprimer et de détecter GLUT8 à la surface cellulaire dans des neurones hippocampiques primaires et des cellules PC12. Cet outil m'a permis de montrer que GLUT8 réside dans un compartiment unique différent des lysosomes, du réticulum endoplasmique, des endosomes, ainsi que du Golgi. De plus, l'absence de translocation de GLUT8 à la suite de l'activation pharmacologique de plusieurs voies de signalisation suggère que GLUT8 ne transloque jamais à la membrane plasmique, mais jouerait plutôt un rôle au sein même de son compartiment intracellulaire unique. La seconde partie de mon travail a été centrée sur GLUT9, lequel -contrairement à GLUT8 -est incapable de transporter le glucose, mais conserve la capacité de se lier à des molécules dérivées du glucose, suggérant que ce pourrait être un senseur de glucose plutôt qu'un vrai transporteur. Le but du projet a donc été de définir si GLUT9 active des signaux intracellulaires quand il est lui-même activé. Pour ce faire, des vecteurs adénoviraux exprimant GLUT9 ont été utilisés pour infecter des lignées cellulaires dérivées de cellules ßpancréatiques et d'hépatocytes, GLUT9 étant exprimé de façon endogène dans le foie. La comparaison de l'expression des gènes entre des cellules infectées avec l'adénovirus exprimant GLUT9 et un adénovirus contrôle exprimant la GFP a permis d'identifier le facteur de transcription HNF4α comme étant régulé de façon GLUT9-dépendante. Résumé tout public Il existe deux types bien distincts de diabète. Le diabète de type 1 constitue environ 10 des cas de diabète et se déclare généralement à l'enfance. Il est caractérisé par une incapacité du pancréas à sécréter une hormone, l'insuline, qui régule la concentration sanguine du glucose (glycémie). Il en résulte une hyperglycémie sévère qui, si le patient n'est pas traité à l'insuline, conduit à de graves dommages à divers organes, ce qui peut mener à la cécité, à la perte des membres inférieurs, ainsi qu'à l'insuffisance rénale. Le diabète de type 2 se déclare plus tard dans la vie. Il n'est pas causé par une déficience en insuline, mais plutôt par une incapacité de l'insuline à agir sur ses tissus cibles. Le nombre de cas de diabète de type 2 augmente de façon dramatique, probablement à la suite de l'augmentation des cas d'obésité, le surpoids chronique étant le principal facteur de risque de diabète. Chez l'individu sain, le glucose sanguin est transporté dans différents organes (foie, muscles, tissu adipeux,...) où il est utilisé comme source d'énergie. Chez le patient diabétique, le captage de glucose est altéré, expliquant ainsi l'hyperglycémie. Il est ainsi crucial d'étudier les mécanismes permettant ce captage. Ainsi, des protéines permettant l'entrée de glucose dans la cellule depuis le milieu extracellulaire ont été découvertes depuis une vingtaine d'années. La plupart d'entre elles appartiennent à une sous-famille de protéines nommée GLUT (pour "GLUcose Transporters") dont cinq membres ont été caractérisés et nommés selon l'ordre de leur découverte (GLUT1-5). Néanmoins, la suppression de ces protéines chez la souris par des techniques moléculaires n'affecte pas totalement le captage de glucose, suggérant ainsi que des transporteurs de glucose encore inconnus pourraient exister. De telles protéines ont été isolées ces dernières années et nommées selon l'ordre de leur découverte (GLUT6-14). Durant mon travail de thèse, je me suis intéressé à deux d'entre elles, GLUT8 et GLUT9, qui ont été découvertes précédemment dans le laboratoire. GLUT8 est exprimé principalement dans le cerveau. La protéine n'est pas exprimée à la surface de la cellule, mais est retenue à l'intérieur. Des mécanismes complexes doivent donc exister pour déplacer le transporteur à la surface cellulaire, afin qu'il puisse permettre l'entrée du glucose dans la cellule. Mon travail a consisté d'une part à définir où se trouve le transporteur à l'intérieur de la cellule, et d'autre part à comprendre les mécanismes capables de déplacer GLUT8 vers la surface cellulaire, en utilisant des neurones exprimant une version marquée du transporteur, permettant ainsi sa détection par des méthodes biochimiques. Cela m'a permis de montrer que GLUT8 est localisé dans une partie de la cellule encore non décrite à ce jour et qu'il n'est jamais déplacé à la surface cellulaire, ce qui suggère que le transporteur doit jouer un rôle à l'intérieur de la cellule et non à sa surface. GLUT9 est exprimé dans le foie et dans les reins. Il ressemble beaucoup à GLUT8, mais ne transporte pas le glucose, ce qui suggère que ce pourrait être un récepteur au glucose plutôt qu'un transporteur à proprement parler. Le but de mon travail a été de tester cette hypothèse, en comparant des cellules du foie exprimant GLUT9 avec d'autres n'exprimant pas la protéine. Par des méthodes d'analyses moléculaires, j'ai pu montrer que la présence de GLUT9 dans les cellules du foie augmente l'expression de HNF4α, une protéine connue pour réguler la sécrétion d'insuline dans le pancréas ainsi que la production de glucose dans le foie. Des expériences complémentaires seront nécessaires afin de mieux comprendre par quels mécanismes GLUT9 influence l'expression de HNF4α dans le foie, ainsi que de définir l'importance de GLUT9 dans la régulation de la glycémie chez l'animal entier.
Resumo:
Under optimal non-physiological conditions of low concentrations and low temperatures, proteins may spontaneously fold to the native state, as all the information for folding lies in the amino acid sequence of the polypeptide. However, under conditions of stress or high protein crowding as inside cells, a polypeptide may misfold and enter an aggregation pathway resulting in the formation of misfolded conformers and fibrils, which can be toxic and lead to neurodegenerative illnesses, such as Alzheimer's, Parkinson's or Huntington's diseases and aging in general. To avert and revert protein misfolding and aggregation, cells have evolved a set of proteins called molecular chaperones. Here, I focussed on the human cytosolic chaperones Hsp70 (DnaK) and HspllO, and co-chaperone Hsp40 (DnaJ), and the chaperonin CCT (GroEL). The cytosolic molecular chaperones Hsp70s/Hspll0s and the chaperonins are highly upregulated in bacterial and human cells under different stresses and are involved both in the prevention and the reversion of protein misfolding and aggregation. Hsp70 works in collaboration with Hsp40 to reactivate misfolded or aggregated proteins in a strict ATP dependent manner. Chaperonins (CCT and GroEL) also unfold and reactivate stably misfolded proteins but we found that it needed to use the energy of ATP hydrolysis in order to evict over- sticky misfolded intermediates that inhibited the unfoldase catalytic sites. Ill In this study, we initially characterized a particular type of inactive misfolded monomeric luciferase and rhodanese species that were obtained by repeated cycles of freeze-thawing (FT). These stable misfolded monomeric conformers (FT-luciferase and FT-rhodanese) had exposed hydrophobic residues and were enriched with wrong ß-sheet structures (Chapter 2). Using FT-luciferase as substrate, we found that the Hsp70 orthologs, called HspllO (Sse in yeast), acted similarly to Hsp70 as were bona fide ATP- fuelled polypeptide unfoldases and was much more than a mere nucleotide exchange factor, as generally thought. Moreover, we found that HspllO collaborated with Hsp70 in the disaggregation of stable protein aggregates in which Hsp70 and HspllO acted as equal partners that synergistically combined their individual ATP-consuming polypeptide unfoldase activities to reactivate the misfolded/aggregated proteins (Chapter 3). Using FT-rhodanese as substrate, we found that chaperonins (GroEL and CCT) could catalytically reactivate misfolded rhodanese monomers in the absence of ATP. Also, our results suggested that encaging of an unfolding polypeptide inside the GroEL cavity under a GroES cap was not an obligatory step as generally thought (Chapter 4). Further, we investigated the role of Hsp40, a J-protein co-chaperone of Hsp70, in targeting misfolded polypeptides substrates onto Hsp70 for unfolding. We found that even a large excess of monomeric unfolded a-synuclein did not inhibit DnaJ, whereas, in contrast, stable misfolded a-synuclein oligomers strongly inhibited the DnaK-mediated chaperone reaction by way of sequestering the DnaJ co-chaperone. This work revealed that DnaJ could specifically distinguish, and bind potentially toxic stably aggregated species, such as soluble a-synuclein oligomers involved in Parkinson's disease, and with the help of DnaK and ATP convert them into from harmless natively unfolded a-synuclein monomers (chapter 5). Finally, our meta-analysis of microarray data of plant and animal tissues treated with various chemicals and abiotic stresses, revealed possible co-expressions between core chaperone machineries and their co-chaperone regulators. It clearly showed that protein misfolding in the cytosol elicits a different response, consisting of upregulating the synthesis mainly of cytosolic chaperones, from protein misfolding in the endoplasmic reticulum (ER) that elicited a typical unfolded protein response (UPR), consisting of upregulating the synthesis mainly of ER chaperones. We proposed that drugs that best mimicked heat or UPR stress at increasing the chaperone load in the cytoplasm or ER respectively, may prove effective at combating protein misfolding diseases and aging (Chapter 6). - Dans les conditions optimales de basse concentration et de basse température, les protéines vont spontanément adopter un repliement natif car toutes les informations nécessaires se trouvent dans la séquence des acides aminés du polypeptide. En revanche, dans des conditions de stress ou de forte concentration des protéines comme à l'intérieur d'une cellule, un polypeptide peu mal se replier et entrer dans un processus d'agrégation conduisant à la formation de conformères et de fibrilles qui peuvent être toxiques et causer des maladies neurodégénératives comme la maladie d'Alzheimer, la maladie de Parkinson ou la chorée de Huntington. Afin d'empêcher ou de rectifier le mauvais repliement des protéines, les cellules ont développé des protéines appelées chaperonnes. Dans ce travail, je me suis intéressé aux chaperonnes cytosoliques Hsp70 (DnaK) et HspllO, la co-chaperones Hsp40 (DnaJ), le complexe CCT/TRiC et GroEL. Chez les bactéries et les humains, les chaperonnes cytosoliques Hsp70s/Hspl 10s et les « chaperonines» sont fortement activées par différentes conditions de stress et sont toutes impliquées dans la prévention et la correction du mauvais repliement des protéines et de leur agrégation. Hsp70 collabore avec Hsp40 pour réactiver les protéines agrégées ou mal repliées et leur action nécessite de 1ATP. Les chaperonines (GroEL) déplient et réactivent aussi les protéines mal repliées de façon stable mais nous avons trouvé qu'elles utilisent l'ATP pour libérer les intermédiaires collant et mal repliés du site catalytique de dépliage. Nous avons initialement caractérisé un type particulier de formes stables de luciférase et de rhodanese monomériques mal repliées obtenues après plusieurs cycles de congélation / décongélation répétés (FT). Ces monomères exposaient des résidus hydrophobiques et étaient plus riches en feuillets ß anormaux. Ils pouvaient cependant être réactivés par les chaperonnes Hsp70+Hsp40 (DnaK+DnaJ) et de l'ATP, ou par Hsp60 (GroEL) sans ATP (Chapitre 2). En utilisant la FT-Luciferase comme substrat nous avons trouvé que HspllO (un orthologue de Hsp70) était une authentique dépliase, dépendante strictement de l'ATP. De plus, nous avons trouvé que HspllO collaborait avec Hsp70 dans la désagrégation d'agrégats stables de protéines en combinant leurs activités dépliase consommatrice d'ATP (Chapitre 3). En utilisant la FT-rhodanese, nous avons trouvé que les chaperonines (GroEL et CCT) pouvaient réactiver catalytiquement des monomères mal repliés en absence d'ATP. Nos résultats suggérèrent également que la capture d'un polypeptide en cours de dépliement dans la cavité de GroEL et sous un couvercle du complexe GroES ne serait pas une étape obligatoire du mécanisme, comme il est communément accepté dans la littérature (Chapitre 4). De plus, nous avons étudié le rôle de Hsp40, une co-chaperones de Hsp70, dans l'adressage de substrats polypeptidiques mal repliés vers Hsp70. Ce travail a révélé que DnaJ pouvait différencier et lier des polypeptide mal repliés (toxiques), comme des oligomères d'a-synucléine dans la maladie de Parkinson, et clairement les différencier des monomères inoffensifs d'a-synucléine (Chapitre 5). Finalement une méta-analyse de données de microarrays de tissus végétaux et animaux traités avec différents stress chimiques et abiotiques a révélé une possible co-expression de la machinerie des chaperonnes et des régulateurs de co- chaperonne. Cette meta-analyse montre aussi clairement que le mauvais repliement des protéines dans le cytosol entraîne la synthèse de chaperonnes principalement cytosoliques alors que le mauvais repliement de protéines dans le réticulum endoplasmique (ER) entraine une réponse typique de dépliement (UPR) qui consiste principalement en la synthèse de chaperonnes localisées dans l'ER. Nous émettons l'hypothèse que les drogues qui reproduisent le mieux les stress de chaleur ou les stress UPR pourraient se montrer efficaces dans la lutte contre le mauvais repliement des protéines et le vieillissement (Chapitre 6).
Resumo:
The innate immune system has evolved the capacity to detect specific pathogens and to interrogate cell and tissue integrity in order to mount an appropriate immune response. Loss of homeostasis in the endoplasmic reticulum (ER) triggers the ER-stress response, a hallmark of many inflammatory and infectious diseases. The IRE1/XBP1 branch of the ER-stress signaling pathway has been recently shown to regulate and be regulated by innate immune signaling pathways in both the presence and absence of ER-stress. By contrast, innate immune pathways negatively affect the activation of two other branches of the ER-stress response as evidenced by reduced expression of the pro-apoptotic transcription factor CHOP. Here we will discuss how innate immune pathways and ER-signaling intersect to regulate the intensity and duration of innate immune responses.
Resumo:
Background: Annotations of completely sequenced genomes reveal that nearly half of the genes identified are of unknown function, and that some belong to uncharacterized gene families. To help resolve such issues, information can be obtained from the comparative analysis of homologous genes in model organisms. Results: While characterizing genes from the retinitis pigmentosa locus RP26 at 2q31-q33, we have identified a new gene, ORMDL1, that belongs to a novel gene family comprising three genes in humans (ORMDL1, ORMDL2 and ORMDL3), and homologs in yeast, microsporidia, plants, Drosophila, urochordates and vertebrates. The human genes are expressed ubiquitously in adult and fetal tissues. The Drosophila ORMDL homolog is also expressed throughout embryonic and larval stages, particularly in ectodermally derived tissues. The ORMDL genes encode transmembrane proteins anchored in the endoplasmic reticulum (ER). Double knockout of the two Saccharomyces cerevisiae homologs leads to decreased growth rate and greater sensitivity to tunicamycin and dithiothreitol. Yeast mutants can be rescued by human ORMDL homologs. Conclusions: From protein sequence comparisons we have defined a novel gene family, not previously recognized because of the absence of a characterized functional signature. The sequence conservation of this family from yeast to vertebrates, the maintenance of duplicate copies in different lineages, the ubiquitous pattern of expression in human and Drosophila, the partial functional redundancy of the yeast homologs and phenotypic rescue by the human homologs, strongly support functional conservation. Subcellular localization and the response of yeast mutants to specific agents point to the involvement of ORMDL in protein folding in the ER.
Resumo:
Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases.
Resumo:
The present review deals with the stages of synthesis and processing of asparagine-linked oligosaccharides occurring in the lumen of the endoplasmic reticulum and their relationship to the acquisition by glycoproteins of their proper tertiary structures. Special emphasis is placed on reactions taking place in trypanosomatid protozoa since their study has allowed the detection of the transient glucosylation of glycoproteins catalyzed by UDP-Glc:glycoprotein glucosyltransferase and glucosidase II. The former enzyme has the unique property of covalently tagging improperly folded conformations by catalyzing the formation of protein-linked Glc1Man7GlcNAc2, Glc1Man8GlcNac2 and Glc1Man9GlcNAc2 from the unglucosylated proteins. Glucosyltransferase is a soluble protein of the endoplasmic reticulum that recognizes protein domains exposed in denatured but not in native conformations (probably hydrophobic amino acids) and the innermost N-acetylglucosamine unit that is hidden from macromolecular probes in most native glycoproteins. In vivo, the glucose units are removed by glucosidase II. The influence of oligosaccharides in glycoprotein folding is reviewed as well as the participation of endoplasmic reticulum chaperones (calnexin and calreticulin) that recognize monoglucosylated species in the same process. A model for the quality control of glycoprotein folding in the endoplasmic reticulum, i.e., the mechanism by which cells recognize the tertiary structure of glycoproteins and only allow transit to the Golgi apparatus of properly folded species, is discussed. The main elements of this control are calnexin and calreticulin as retaining components, the UDP-Glc:glycoprotein glucosyltransferase as a sensor of tertiary structures and glucosidase II as the releasing agent.
Resumo:
Relaxation in the mammalian ventricle is initiated by Ca2+ removal from the cytosol, which is performed by three main transport systems: sarcoplasmic reticulum Ca2+-ATPase (SR-A), Na+-Ca2+ exchanger (NCX) and the so-called slow mechanisms (sarcolemmal Ca2+-ATPase and mitochondrial Ca2+ uptake). To estimate the relative contribution of each system to twitch relaxation, SR Ca2+ accumulation must be selectively inhibited, usually by the application of high caffeine concentrations. However, caffeine has been reported to often cause changes in membrane potential due to NCX-generated inward current, which compromises the reliability of its use. In the present study, we estimated integrated Ca2+ fluxes carried by SR-A, NCX and slow mechanisms during twitch relaxation, and compared the results when using caffeine application (Cf-NT) and an electrically evoked twitch after inhibition of SR-A with thapsigargin (TG-TW). Ca2+ transients were measured in 20 isolated adult rat ventricular myocytes with indo-1. For transients in which one or more transporters were inhibited, Ca2+ fluxes were estimated from the measured free Ca2+ concentration and myocardial Ca2+ buffering characteristics. NCX-mediated integrated Ca2+ flux was significantly higher with TG-TW than with Cf-NT (12 vs 7 µM), whereas SR-dependent flux was lower with TG-TW (77 vs 81 µM). The relative participations of NCX (12.5 vs 8% with TG-TW and Cf-NT, respectively) and SR-A (85 vs 89.5% with TG-TW and Cf-NT, respectively) in total relaxation-associated Ca2+ flux were also significantly different. We thus propose TG-TW as a reliable alternative to estimate NCX contribution to twitch relaxation in this kind of analysis.