988 resultados para Restricted dissimilarity function
Resumo:
This study evaluated the effects of exercise training on myocardial function and ultrastructure of rats submitted to different levels of food restriction (FR). Male Wistar-Kyoto rats, 60 days old, were submitted to free access to food, light FR (20%), severe FR (50%) and/or to swimming training (one hour per day with 5% of load, five days per week for 90 days). Myocardial function was evaluated by left ventricular papillary muscle under basal condition (calcium 1.25 mM), and after extracellular calcium elevation to 5.2 mM and isoproterenol (I PM) addition. The ultrastructure of the myocardium was examined in the papillary muscle. The training effectiveness was verified by improvement of myocardial metabolic enzyme activities. Both 20% and 50% food restriction protocols presented minor body and ventricular weights gain. The 20%-FR, in sedentary or trained rats, did not alter myocardial function or ultrastructure. The 50%-FR, in sedentary rats, caused myocardial dysfunction under basal condition, decreased response to inotropic stimulation, and promoted myocardial ultrastructural damage. The 50%-FR, in exercised rats, increased myocardial dysfunction under basal condition but increased response to inotropic stimulation although there was myocardial ultrastructural damage. In conclusion, the exercise training in severe restriction caused marked myocardial dysfunction at basal condition but increased myocardial response to inotropic stimulation. (c) 2005 Elsevier B.V.. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: This study compared the influence of fasting/refeeding cycles and food restriction on rat myocardial performance and morphology. Methods: Sixty-day-old male Wistar rats were submitted to food ad libitum (C), 50% food restriction (R50), and fasting/refeeding cycles (RF) for 12 weeks. Myocardial function was evaluated under baseline conditions and after progressive increase in calcium and isoproterenol. Myocardium ultrastructure was examined in the papillary muscle. Results: Fasting/refeeding cycles maintained rat body weight and left ventricle weight between control and food-restricted rats. Under baseline conditions, the time to peak tension (TPT) was more prolonged in R50 than in RF and C rats. Furthermore, the maximum tension decline rate (-dT/dt) increased less in R50 than in RF with calcium elevation. While the R50 group showed focal changes in many muscle fibers, such as the disorganization or loss of myofilaments, polymorphic mitochondria with disrupted cristae, and irregular appearance or infolding of the plasma membrane, the RF rats displayed few alterations such as loss or disorganization of myofibrils. Conclusion: Food restriction promotes myocardial dysfunction, not observed in RF rats, and higher morphological damage than with fasting/refeeding. The increase in TPT may be attributed possibly to the disorganization and loss of myofibrils; however, the mechanisms responsible for the alteration in -dT/dt in R50 needs to be further clarified. © 2010 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The mitochondrion is an essential cytoplasmic organelle that provides most of the energy necessary for eukaryotic cell physiology. Mitochondrial structure and functions are maintained by proteins of both mitochondrial and nuclear origin. These organelles are organized in an extended network that dynamically fuses and divides. Mitochondrial morphology results from the equilibrium between fusion and fission processes, controlled by a family of “mitochondria-shaping” proteins. It is becoming clear that defects in mitochondrial dynamics can impair mitochondrial respiration, morphology and motility, leading to apoptotic cell death in vitro and more or less severe neurodegenerative disorders in vivo in humans. Mutations in OPA1, a nuclear encoded mitochondrial protein, cause autosomal Dominant Optic Atrophy (DOA), a heterogeneous blinding disease characterized by retinal ganglion cell degeneration leading to optic neuropathy (Delettre et al., 2000; Alexander et al., 2000). OPA1 is a mitochondrial dynamin-related guanosine triphosphatase (GTPase) protein involved in mitochondrial network dynamics, cytochrome c storage and apoptosis. This protein is anchored or associated on the inner mitochondrial membrane facing the intermembrane space. Eight OPA1 isoforms resulting from alternative splicing combinations of exon 4, 4b and 5b have been described (Delettre et al., 2001). These variants greatly vary among diverse organs and the presence of specific isoforms has been associated with various mitochondrial functions. The different spliced exons encode domains included in the amino-terminal region and contribute to determine OPA1 functions (Olichon et al., 2006). It has been shown that exon 4, that is conserved throughout evolution, confers functions to OPA1 involved in maintenance of the mitochondrial membrane potential and in the fusion of the network. Conversely, exon 4b and exon 5b, which are vertebrate specific, are involved in regulation of cytochrome c release from mitochondria, and activation of apoptosis, a process restricted to vertebrates (Olichon et al., 2007). While Mgm1p has been identified thanks to its role in mtDNA maintenance, it is only recently that OPA1 has been linked to mtDNA stability. Missense mutations in OPA1 cause accumulation of multiple deletions in skeletal muscle. The syndrome associated to these mutations (DOA-1 plus) is complex, consisting of a combination of dominant optic atrophy, progressive external ophtalmoplegia, peripheral neuropathy, ataxia and deafness (Amati- Bonneau et al., 2008; Hudson et al., 2008). OPA1 is the fifth gene associated with mtDNA “breakage syndrome” together with ANT1, PolG1-2 and TYMP (Spinazzola et al., 2009). In this thesis we show for the first time that specific OPA1 isoforms associated to exon 4b are important for mtDNA stability, by anchoring the nucleoids to the inner mitochondrial membrane. Our results clearly demonstrate that OPA1 isoforms including exon 4b are intimately associated to the maintenance of the mitochondrial genome, as their silencing leads to mtDNA depletion. The mechanism leading to mtDNA loss is associated with replication inhibition in cells where exon 4b containing isoforms were down-regulated. Furthermore silencing of exon 4b associated isoforms is responsible for alteration in mtDNA-nucleoids distribution in the mitochondrial network. In this study it was evidenced that OPA1 exon 4b isoform is cleaved to provide a 10kd peptide embedded in the inner membrane by a second transmembrane domain, that seems to be crucial for mitochondrial genome maintenance and does correspond to the second transmembrane domain of the yeasts orthologue encoded by MGM1 or Msp1, which is also mandatory for this process (Diot et al., 2009; Herlan et al., 2003). Furthermore in this thesis we show that the NT-OPA1-exon 4b peptide co-immuno-precipitates with mtDNA and specifically interacts with two major components of the mitochondrial nucleoids: the polymerase gamma and Tfam. Thus, from these experiments the conclusion is that NT-OPA1- exon 4b peptide contributes to the nucleoid anchoring in the inner mitochondrial membrane, a process that is required for the initiation of mtDNA replication and for the distribution of nucleoids along the network. These data provide new crucial insights in understanding the mechanism involved in maintenance of mtDNA integrity, because they clearly demonstrate that, besides genes implicated in mtDNA replications (i.e. polymerase gamma, Tfam, twinkle and genes involved in the nucleotide pool metabolism), OPA1 and mitochondrial membrane dynamics play also an important role. Noticeably, the effect on mtDNA is different depending on the specific OPA1 isoforms down-regulated, suggesting the involvement of two different combined mechanisms. Over two hundred OPA1 mutations, spread throughout the coding region of the gene, have been described to date, including substitutions, deletions or insertions. Some mutations are predicted to generate a truncated protein inducing haploinsufficiency, whereas the missense nucleotide substitutions result in aminoacidic changes which affect conserved positions of the OPA1 protein. So far, the functional consequences of OPA1 mutations in cells from DOA patients are poorly understood. Phosphorus MR spectroscopy in patients with the c.2708delTTAG deletion revealed a defect in oxidative phosphorylation in muscles (Lodi et al., 2004). An energetic impairment has been also show in fibroblasts with the severe OPA1 R445H mutation (Amati-Bonneau et al., 2005). It has been previously reported by our group that OPA1 mutations leading to haploinsufficiency are associated in fibroblasts to an oxidative phosphorylation dysfunction, mainly involving the respiratory complex I (Zanna et al., 2008). In this study we have evaluated the energetic efficiency of a panel of skin fibroblasts derived from DOA patients, five fibroblast cell lines with OPA1 mutations causing haploinsufficiency (DOA-H) and two cell lines bearing mis-sense aminoacidic substitutions (DOA-AA), and compared with control fibroblasts. Although both types of DOA fibroblasts maintained a similar ATP content when incubated in a glucose-free medium, i.e. when forced to utilize the oxidative phosphorylation only to produce ATP, the mitochondrial ATP synthesis through complex I, measured in digitonin-permeabilized cells, was significantly reduced in cells with OPA1 haploinsufficiency only, whereas it was similar to controls in cells with the missense substitutions. Furthermore, evaluation of the mitochondrial membrane potential (DYm) in the two fibroblast lines DOA-AA and in two DOA-H fibroblasts, namely those bearing the c.2819-2A>C mutation and the c.2708delTTAG microdeletion, revealed an anomalous depolarizing response to oligomycin in DOA-H cell lines only. This finding clearly supports the hypothesis that these mutations cause a significant alteration in the respiratory chain function, which can be unmasked only when the operation of the ATP synthase is prevented. Noticeably, oligomycin-induced depolarization in these cells was almost completely prevented by preincubation with cyclosporin A, a well known inhibitor of the permeability transition pore (PTP). This results is very important because it suggests for the first time that the voltage threshold for PTP opening is altered in DOA-H fibroblasts. Although this issue has not yet been addressed in the present study, several are the mechanisms that have been proposed to lead to PTP deregulation, including in particular increased reactive oxygen species production and alteration of Ca2+ homeostasis, whose role in DOA fibroblasts PTP opening is currently under investigation. Identification of the mechanisms leading to altered threshold for PTP regulation will help our understanding of the pathophysiology of DOA, but also provide a strategy for therapeutic intervention.
Resumo:
Pancreatic beta-cell-restricted knockout of the insulin receptor results in hyperglycemia due to impaired insulin secretion, suggesting that this cell is an important target of insulin action. The present studies were undertaken in beta-cell insulin receptor knockout (betaIRKO) mice to define the mechanisms underlying the defect in insulin secretion. On the basis of responses to intraperitoneal glucose, approximately 7-mo-old betaIRKO mice were either diabetic (25%) or normally glucose tolerant (75%). Total insulin content was profoundly reduced in pancreata of mutant mice compared with controls. Both groups also exhibited reduced beta-cell mass and islet number. However, insulin mRNA and protein were similar in islets of diabetic and normoglycemic betaIRKO mice compared with controls. Insulin secretion in response to insulin secretagogues from the isolated perfused pancreas was markedly reduced in the diabetic betaIRKOs and to a lesser degree in the nondiabetic betaIRKO group. Pancreatic islets of nondiabetic betaIRKO animals also exhibited defects in glyceraldehyde- and KCl-stimulated insulin release that were milder than in the diabetic animals. Gene expression analysis of islets revealed a modest reduction of GLUT2 and glucokinase gene expression in both the nondiabetic and diabetic mutants. Taken together, these data indicate that loss of functional receptors for insulin in beta-cells leads primarily to profound defects in postnatal beta-cell growth. In addition, altered glucose sensing may also contribute to defective insulin secretion in mutant animals that develop diabetes.
Resumo:
DMRT (Doublesex and Mab-3 related transcription factor) proteins generally associated with sexual differentiation in many organisms share a common DNA binding domain and are often expressed in reproductive tissues. Aside from doublesex, which is a central factor in the regulation of sex determination, Drosophila possesses three different dmrt genes that are of unknown function. Because the association with sexual differentiation and reproduction is not universal and some DMRT proteins have been found to play other developmental roles we chose to further characterize one of these Drosophila genes. We carried out genetic analysis of dmrt93B, which was previously found to be expressed sex-specifically in the developing somatic gonad and to affect testis morphogenesis in RNAi knockdowns. In order to disrupt this gene, the GAL4 yeast transcriptional activator followed by a polyadenylation signal was inserted after the dmrt93B start codon and introduced into the genome by homologous recombination. Analysis of the knock-in mutation as well as a small deletion removing all dmrt93B sequence demonstrate that loss of function causes partial lethality at the late pupal stage. Surprisingly, these mutations have no significant effect on gonad formation or male fertility. Analysis of GAL4-driven GFP reporter expression indicates that the dmrt93B promoter activity is highly specific to neurons in the suboesophageal and proventricular ganglion in larva and adult of both sexes suggesting a possible role in digestive tract function. Using the Capillary Feeder (CAFÉ) assay to measure daily food intake we find that reduction in this gene’s function leads to an increase in food consumption. These results suggest dmrt93 plays an important role in the formation or maintenance of neurons that affect feeding and support the idea that dmrt genes may not be restricted to roles in sexual differentiation.
Resumo:
In order to more fully understand the function of surface GalTase on mesenchymal cells, anti-GalTase IgG was used to (a) examine the role of surface GalTase during mouse mesenchymal cell migration on laminin and fibronectin; (b) define the plasma membrane distribution of GalTase by indirect immunofluorescence on migrating cells; (c) quantitate the level of surface GalTase on migrating cells; and (d) determine whether GalTase is associated with the cytoskeleton.^ Results show that anti-GalTase IgG was able to inhibit migration (48-80% as compared to basal rate) when cells were migrating on laminin-containing matrices. Monovalent Fab fragments inhibited migration on laminin by 90% after 4 hours. On the other hand, anti-GalTase IgG had no effect on cells migrating on fibronectin. This illustrates the substrate specificity of GalTase mediated-migration. When anti-GalTase IgG was used to localize surface GalTase on cells migratory on laminin, the enzyme was restricted to the leading and trailing edges of the cell. Assays indicate that GalTase is elevated approximately 3-fold when cells are migrating on laminin-containing matrices as compared to migratory cells on plastic or fibronectin, or as compared to stationary cells on any substrate. Laminin appears to recruit GalTase from preexisting intracellular pools to the growing lamellipodia.^ Double-label indirect immunofluorescence studies indicate that there is an apparent co-localization between some of the surface GalTase and some actin filaments. This relationship was explored by extracting cells prelabeled with anti-GalTase IgG and quantitated by radiolabeled second antibodies. Results show that 79% of the surface GalTase is associated with the cytoskeleton (as judged by detergent insolubility) when monovalent antibodies (Fab) are used. However virtually all (80-100%) of the surface GalTase can be induced to associate with the cytoskeleton when cross-linked with bivalent antibodies. Furthermore, when cells in suspension are incubated with divalent antibodies, an additional 66% of the surface GalTase can be induced to associate with the cytoskeleton. The elevated levels of surface GalTase detectable on cells migrating on laminin also appear to be associated with the cytoskeleton.^ Several lines of evidence suggest that GalTase is associated with F-actin. Data suggest that laminin induces the expression of surface GalTase to the growing lamellipodia where it becomes associated with the cytoskeleton leading to cell spreading and migration. (Abstract shortened with permission of author.) ^
Resumo:
The skin immune system is believed to be a crucial site of contact between immunocompetent cells and invading organisms. A novel T cell component of murine epidermis is the Thy-1$\sp+$ dendritic epidermal cell (Tdec). To assess the immunocompetence of Tdec, the ability of Tdec to induce immune responses was tested. Tdec were unable to induce positive immune responses in three models of immunocompetence. Subsequent studies were designed to test the hypothesis that Tdec are involved in the down-regulation of cell-mediated immunity against cutaneous antigens. Cultured Tdec lines were conjugated in vitro with the hapten, fluorescein isothiocyanate (FITC). The intrafootpad (ifp.) or intravenous (i.v.) injection of FTIC-conjugated Tdec induced immunologic tolerance to subsequent epicutaneous sensitization with FITC. This induction of tolerance was antigen-specific, and injection of unconjugated Tdec had no effect on the contact hypersensitivity response to FITC. Tolerance was not H-2-restricted, since it could be induced in both syngeneic and allogeneic recipients of FITC-conjugated Tdec. No suppressive activity could be detected in lymphoid organs of animals tolerized by the ifp. injection of hapten-conjugated Tdec. In contrast, suppressor T cells were present in the spleens of mice injected i.v. with hapten-conjugated Tdec. These results indicate that Ts cells are not involved in the induction of tolerance by the ifp. injection of hapten-conjugated Tdec. To investigate the mechanism by which the ifp. injection of hapten-conjugated Tdec induced tolerance to contact sensitization, the activity of these cells was measured in vitro. The addition of hapten-conjugated Tdec inhibited the proliferation of Con A-stimulated lymphocytes. In addition, FITC-conjugated Tdec abrogated the proliferation of normal lymphocytes in response to FITC-labeled stimulator cells. These studies suggest that specific T cell-mediated immunity is the target of the inhibitory effect of Tdec in vitro. In summary, these results demonstrate that while Tdec are unable to induce positive immune responses, they can produce a state of specific immunologic tolerance when injected ifp. or i.v. These results also suggest that the induction of immunologic tolerance by hapten-conjugated Tdec may occur through the inactivation or elimination of activated T lymphocytes resulting in down-regulation of cell-mediated immunity against cutaneous antigens. ^
Resumo:
Let Y be a stochastic process on [0,1] satisfying dY(t)=n 1/2 f(t)dt+dW(t) , where n≥1 is a given scale parameter (`sample size'), W is standard Brownian motion and f is an unknown function. Utilizing suitable multiscale tests, we construct confidence bands for f with guaranteed given coverage probability, assuming that f is isotonic or convex. These confidence bands are computationally feasible and shown to be asymptotically sharp optimal in an appropriate sense.
Resumo:
Pem, a member of the PEPP homeobox family, is expressed in somatic cells in male and female reproductive tissues. In the adult murine testis, Pem is specifically expressed in Sertoli cells, where it is restricted to stages IV–VIII of the seminiferous epithelial cycle. To identify Pem's function in Sertoli cells, transgenic mice were generated that express Pem in Sertoli cells during all stages of the seminiferous epithelial cycle. This resulted in an increase in double-strand DNA breaks in preleptotene spermatocytes and single-strand DNA breaks in elongating spermatids. My results suggest that Pem regulates Sertoli-cell genes that encode secreted or cell-surface proteins that serve to control premeiotic DNA replication, DNA repair, and/or chromatin remodeling in the adjacent germ cells. Three additional transgenic mouse containing varying lengths of the Pem male-specific promoter (Pp) were generated to identify the sequences responsible for regulating Pem expression in the testis and epididymis. My analysis suggests that there are at least two regulatory regions in the Pem Pp. In the testis, region II directs androgen-dependent expression specifically in Sertoli cells whereas region I fine-tunes stage-specific expression by acting as a negative regulator. In the epididymis, region II confers androgen-dependent, developmentally-regulated expression in the caput whereas region I prevents inappropriate expression in the corpus. I also report the identification and characterization of two human PEPP family members related to Pem that I have named hPEPP1 and hPEPP2. The hPEPP1 and hPEPP2 homeodomains are more closely related to PEPP subfamily homeodomains than to any other homeodomain subfamily. Both genes are localized to the specific region of the human X chromosome that shares synteny with the region on the murine X chromosome containing three PEPP homeobox genes, Pem, Psx-1, and Psx-2. hPEPP1 and hPEPP2 mRNA expression is restricted to the testis but is aberrantly expressed in tumor cells of different origins, analogous to the expression pattern of Pem but not of Psx-1 or Psx-2. Unlike all known PEPP members, neither hPEPP1 nor hPEPP2 are expressed in placenta, which suggests that the regulation of the PEPP family has undergone significant alteration since the split between hominids and rodents. ^
Resumo:
Vaccination of mice with activated autoantigen-reactive CD4+ T cells (T cell vaccination, TCV) has been shown to induce protection from the subsequent induction of a variety of experimental autoimmune diseases, including experimental allergic encephalomyelitis (EAE). Although the mechanisms involved in TCV-mediated protection are not completely known, there is some evidence that TCV induces CD8+ regulatory T cells that are specific for pathogenic CD4+ T cells. Previously, we demonstrated that, after superantigen administration in vivo, CD8+ T cells emerge that preferentially lyse and regulate activated autologous CD4+ T cells in a T cell receptor (TCR) Vβ-specific manner. This TCR Vβ-specific regulation is not observed in β2-microglobulin-deficient mice and is inhibited, in vitro, by antibody to Qa-1. We now show that similar Vβ8-specific Qa-1-restricted CD8+ T cells are also induced by TCV with activated CD4+ Vβ8+ T cells. These CD8+ T cells specifically lyse murine or human transfectants coexpressing Qa-1 and murine TCR Vβ8. Further, CD8+ T cell hybridoma clones generated from B10.PL mice vaccinated with a myelin basic protein-specific CD4+Vβ8+ T cell clone specifically recognize other CD4+ T cells and T cell tumors that express Vβ8 and the syngeneic Qa-1a but not the allogeneic Qa-1b molecule. Thus, Vβ-specific Qa-1-restricted CD8+ T cells are induced by activated CD4+ T cells. We suggest that these CD8+ T cells may function to specifically regulate activated CD4+ T cells during immune responses.
Resumo:
Vertebrate limb tendons are derived from connective cells of the lateral plate mesoderm. Some of the developmental steps leading to the formation of vertebrate limb tendons have been previously identified; however, the molecular mechanisms responsible for tendinous patterning and maintenance during embryogenesis are largely unknown. The eyes absent (eya) gene of Drosophila encodes a novel nuclear protein of unknown molecular function. Here we show that Eya1 and Eya2, two mouse homologues of Drosophila eya, are expressed initially during limb development in connective tissue precursor cells. Later in limb development, Eya1 and Eya2 expression is associated with cell condensations that form different sets of limb tendons. Eya1 expression is largely restricted to flexor tendons, while Eya2 is expressed in the extensor tendons and ligaments of the phalangeal elements of the limb. These data suggest that Eya genes participate in the patterning of the distal tendons of the limb. To investigate the molecular functions of the Eya gene products, we have analyzed whether the highly divergent PST (proline-serine-threonine)-rich N-terminal regions of Eya1–3 function as transactivation domains. Our results demonstrate that Eya gene products can act as transcriptional activators, and they support a role for this molecular function in connective tissue patterning.
Resumo:
Studies in melanoma patients have revealed that self proteins can function as targets for tumor-reactive cytotoxic T lymphocytes (CTL). One group of self proteins MAGE, BAGE, and GAGE are normally only expressed in testis and placenta, whilst another group of CTL recognized proteins are melanocyte-specific differentiation antigens. In this study we have investigated whether CTL can be raised against a ubiquitously expressed self protein, mdm-2, which is frequently overexpressed in tumors. The observation that T-cell tolerance is self major histocompatibility complex-restricted was exploited to generate CTL specific for an mdm-2 derived peptide presented by nonself major histocompatibility complex class I molecules. Thus, the allo-restricted T-cell repertoire of H-2d mice was used to isolate CTL specific for the mdm100 peptide presented by allogeneic H-2Kb class I molecules. In vitro, these CTL discriminated between transformed and normal cells, killing specifically Kb-positive melanoma and lymphoma tumors but not Kb-expressing dendritic cells. In vivo, the CTL showed antitumor activity and delayed the growth of melanoma as well as lymphoma tumors in H-2b recipient mice. These experiments show that it is possible to circumvent T-cell tolerance to ubiquitously expressed self antigens, and to target CTL responses against tumors expressing elevated levels of structurally unaltered proteins.