56 resultados para Respirometric
Resumo:
Energetic cost of digging behavior in workers of the leaf-cutting ant Atta sexdens (Fabricius). During nest excavation, leaf-cutting ant workers undergo reduction in their body reserve, particularly carbohydrates. In order to estimate the energetic cost of digging, groups of 30 workers of the leaf-cutting ant Atta sexdens were sealed in a hermetic chamber for 24, 48 and 72 hours, with and without soil for digging, and had the CO2 concentration measured using respirometric chambers as well as volume of soil excavated (g). As expected, the worker groups that carried out soil excavation expelled more carbon dioxide than the groups that did not excavate. Therefore, a worker with body mass of 9.65 ± 1.50 mg dug in average 0.85 ± 0.27 g of soil for 24 hours, consuming ca. 0.58 ± 0.23 J. In this study, we calculate that the energetic cost of excavation per worker per day in the experimental set-up was ca. 0.58 J.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The biodegradability properties of poly(epsilon-caprolactone) (PCL) and modified adipate-starch (AS) blends, using Edenol-3203 (E) as a starch plasticizer, were investigated in laboratory by burial tests of the samples in previously analyzed agricultural soil. The biodegradation process was carried out using the respirometric test according to ASTM D 5988-96, and the mineralization was followed by both variables such as carbon dioxide evolution and mass loss. The results indicated that the presence of AS-E accelerated the biodegradation rate as expected.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The increase in the oil price and the current trend of using renewable raw materials for the production of chemicals renew the interest in the production of biobutanol that, produced by fermentation of agricultural raw materials, can be used as a component of gasoline and diesel. With the commercialization of new fuels, environmental damages due to spills can occur. Among other techniques, the clean-up of these contaminated areas can be achieved with bioremediation, a technique based on the action of microorganisms, which has the advantage of turning hazardous contaminants into non toxic substances such as CO2, water and biomass. Thus, bearing in mind the use of biobutanol in the near future as a gasoline extender and due to the lack of knowledge of the effects of butanol on the biodegradation of gasoline, this work aimed to assess the aerobic biodegradation of butanol/gasoline blends and butanol/diesel (20% v/v), being the latter compared to the ethanol/gasoline blend and biodiesel/diesel (20% v/v), respectively. Two experimental techniques were employed, namely the respirometric method and the redox indicator 2,6-dichlorophenol indophenol (DCPIP) test. In the former, experiments simulating the contamination of natural environments were carried out in biometer flasks, used to measure the microbial CO2 production. The DCPIP test assessed the capability of four inocula to biodegrade the fuel blends. In butanol/gasoline experiments the addition of the alcohols to the gasoline resulted in positive synergic effects on the biodegradation of the fuels in soil and...(Complete abstract click electronic access below)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The stillage, which is a liquid residue from the distillation of the sugarcane ethanolic fermentation, contains organic matter and can be a big source of pollution when it is discarded in the wrong way. Its application as fertilizer has been extended, which is reason to cause concerns regarding the environment. The aim of this work was to evaluate and quantify the biodegradation of stillage in sandy and clay soils, besides verifying the efficiency of the Embiotic Line®inoculum as an accelerator of the biodegradation. Bartha and Pramer respirometric technique was used to determine the production of CO2 during the 50 days of the biodegradation process, and the quantification of the initial and final microorganisms was also conducted. Results were analyzed using the Friedman statistical test. Clay soils were significantly better on stillage decomposition when compared to sandy soils (p=0.0153). Clay soils presented greater efficiency in stillage biodegradation, with higher field capacity, better water, organic matter and microbial retention. Regarding the use of the embiotic line, the experiment has shown this product does not interfere positively in the stillage biodegradation for both soils, possibly needing adjustments in its composition.
Resumo:
Bacteria are able to induce carbonate precipitation although the participation of microbial or chemical processes in speleothem formation remains a matter of debate. In this study, the origin of carbonate depositions such as moonmilk, an unconsolidated microcrystalline formation with high water content, and the consolidation of carbonate precipitates into hard speleothems were analyzed. The utilized methods included measurements of the composition of stable isotopes in these precipitates, fluorimetric determinations of RNA/DNA ratios and respirometric estimations in Altamira Cave. Results from isotope composition showed increases of the δ18O and δ13C ratios from moonmilk in the very first stages of formation toward large speleothems. Estimates of RNA/DNA ratios suggested an inactivation of microorganisms from incipient moonmilk toward consolidated deposits of calcium carbonate. Respiratory activity of microorganisms also showed a significant decrease in samples with accumulated calcite. These results suggest that bacterial activity induces the conditions required for calcium carbonate precipitation, initiating the first stages of deposition. Progressive accumulation of carbonate leads towards a less favorable environment for the development of bacteria. On consolidated speleothems, the importance of bacteria in carbonate deposition decreases and chemical processes gain importance in the deposition of carbonates.
Resumo:
In this study, the filtration process and the biomass characteristics in a laboratory-scale submerged membrane bioreactor (MBR) equipped with a hollow fiber (HF) microfiltration membrane were studied at different solid retention times (SRT). The MBR was fed by synthetic wastewater and the organic loading rate (OLR) was 0.5, 0.2, 0.1, and 0.08 kg COD kg VSS−1 d−1 for 10, 30, 60, and 90 days of SRT, respectively. The hydraulic retention time was 8.4 h and the permeate flux was 6 L m−2 h−1(LMH). Data analysis confirmed that at all the studied SRTs, the HF-MBR operated very good obtaining of high quality permeates. Chemical Oxygen Demand (COD) removal efficiencies were higher than 95%. The best filtration performance was reached at SRT of 30 d. On the other hand, the respirometric analysis showed that biomass was more active and there was more biomass production at low SRTs. The concentration of soluble extracellular polymeric substances (EPS) decreased with increasing SRT. A decrease of soluble EPS caused a decrease of membrane fouling rate, decreasing the frequency of chemical cleanings. The floc size decreased with SRT increasing. At high SRTs, there was more friction among particles due to the increase of the cellular density and the flocs broke decreasing their size.
Resumo:
In this article we present a study of the effects of external and internal mass transfer limitation of oxygen in a nitrifying system. The oxygen uptake rates (OUR) were measured on both a macro-scale with a respirometric reactor using off-gas analysis (Titrimetric and Off-Gas Analysis (TOGA) sensor) and on a micro-scale with microsensors. These two methods provide independent, accurate measurements of the reaction rates and concentration profiles around and in the granules. The TOGA sensor and micro-sensor measurements showed a significant external mass transfer effect at low dissolved oxygen (DO) concentrations in the bulk liquid while it was insignificant at higher DO concentrations. The oxygen distribution with anaerobic or anoxic conditions in the center clearly shows major mass transfer limitation in the aggregate interior. The large drop in DO concentration of 22 - 80% between the bulk liquid and aggregate surface demonstrates that the external mass transfer resistance is also highly important. The maximum OUR even for floccular biomass was only attained at much higher DO concentrations ( approximate to 8 mg/L) than typically used in such systems. For granules, the DO required for maximal activity was estimated to be > 20mg/L, clearly indicating the effects of the major external and internal mass transfer limitations on the overall biomass activity. Smaller aggregates had a larger volumetric OUR indicating that the granules may have a lower activity in the interior part of the aggregate. (C) 2004 Wiley Periodicals, Inc.
Resumo:
The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3) d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L-1. Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosonlonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662. (c) 2005 Elsevier Ltd. All rights reserved.