991 resultados para Resonance Raman
Resumo:
The titanium species in four kinds of titanium-containing MFI zeolites have been studied by ultraviolet (UV)-Raman and ultraviolet visible (UV-Vis) absorption spectroscopies and by the epoxidation of propylene with diluted H2O2 solution (30%). UV-Raman spectroscopy is proved to be a suitable means to estimate qualitatively the framework titanium in TS-l zeolites. Based on the comparison of the relative intensity ratio I-1125/I-380 of UV-Raman spectra, the TS-1(conv.) sample synthesized hydrothermally by the conventional procedure shows the highest amount of framework titanium. UV-Vis spectroscopy reveals that besides minor anatase. titanium species are mainly tetrahydrally coordinated into the framework for TS-l(conv.) or the Ti-ZSM-5 sample prepared by gas-solid reaction between deboronated B-ZSM-5 and TiCl4 vapor at elevated temperatures. For the TS-1(org.) and TS-1(inorg.) samples synthesized hydrothermally using tetrapropylammonium bromide (TPABr) as template and tetrabutylorthotitanite (TBOT) and TiCl3 as titanium source, respectively, the presence of mononuclear and isolated TiOx species which are proposed to bond to the zeolite extraframework is observed. In addition to the framework titanium species, these isolated TiOx species are assumed to be also active for propylene epoxidation.
Resumo:
Vanadium species in tetrahedral and octahedral coordination in V-MCM-41 molecular sieve are characterized by UV resonance Raman bands at 1070 and 930 cm(-1) respectively.
Resumo:
Framework titanium in Ti-silicalite-1 (TS-1) zeolite was selectively identified by its resonance Raman bands using ultraviolet (W) Raman spectroscopy. Raman spectra of the TS-1 and silicalite-1 zeolites were obtained and compared using continuous wave laser lines at 244, 325, and 488 nm as the excitation sources. It was only with the excitation at 244 nm that resonance enhanced Raman bands at 490, 530, and 1125 cm(-1) appeared exclusively for the TS-1 zeolite. Furthermore, these bands increased in intensity with the crystallization time of the TS-1 zeolite. The Raman bands at 490, 530, and 1125 cm(-1) are identified as the framework titanium species because they only appeared when the laser excites the charge-transfer transition of the framework titanium species in the TS-1. No resonance Raman enhancement was detected for the bands of silicalite-1 zeolite and for the band at 960 cm(-1) of TS-1 with any of the excitation sources ranging from the visible tb UV regions. This approach can be applicable for the identification of other transition metal ions substituted in the framework of a zeolite or any other molecular sieve.
Resumo:
Two series of ruthenium(II) polypyridyl complexes [Ru(bipy)2(phpytr)]+ and [Ru(bipy)2(phpztr)]+ (where Hphpytr = 2-(5-phenyl-1H-[1,2,4]triazol-3-yl)-pyridine and Hphpztr = 2-(5-phenyl-1H-[1,2,4]triazol-3-yl)-pyrazine) are examined by electrochemistry, UV/Vis, emission, resonance Raman, transient resonance Raman and transient absorption spectroscopy, in order to obtain a more comprehensive understanding of their excited state electronic properties. The interpretation of the results obtained is facilitated by the availability of several isotopologues of each of the complexes examined. For the pyridine-1,2,4-triazolato based complex the lowest emissive excited state is exclusively bipy based, however, for the pyrazine based complexes excited state localisation on particular ligands shows considerable solvent and pH dependency.
Resumo:
The free-base form of tetra-tert-butyl porphine (TtBP), which has extremely bulky meso substituents, is severely distorted from planarity, with a ruffling angle of 65.5degrees. The resonance Raman spectrum of TtBP (lambda(ex) = 457.9 nm) and its d(2), d(8), and d(10) isotopomers have been recorded, and while the spectra show high-frequency bands similar to those observed for planar meso-substituted porphyrins, there are several additional intense bands in the low-frequency region. Density functional calculations at the B3-LYP/6-31G(d) level were carried out for all four isotopomers, and calculated frequencies were scaled using a single factor of 0.98. The single factor scaling approach was validated on free base porphine where the RMS error was found to be 14.9 cm(-1). All the assigned bands in the high-frequency (> 1000 cm(-1)) region of TtBP were found to be due to vibrations similar in character to the in-plane skeletal modes of conventional planar porphyrins. In the low-frequency region, two of the bands, assigned as nu(8) (ca. 330 cm(-1)) and nu(16) (ca. 540 cm(-1)), are also found in planar porphyrins such as tetra-phenyl porphine (TPP) and tetra-iso-propyl porphine (IPP). Of the remaining three very strong bands, the lowest frequency band was assigned as gamma(12) (pyr swivel, obsd 415 cm(-1), calcd 407 cm(-1) in do). The next band, observed at 589 cm-1 in the do compound (calcd 583 cm(-1)), was assigned as a mode whose composition is a mixture of modes that were previously labeled gamma(13) (gamma(CmCaHmCa)) andy gamma(11) (pyr fold(asym)) in NiOEP. The final strong band, observed at 744 cm(-1) (calcd 746 cm(-1)), was assigned to a mode whose composition is again a mixture of gamma(11) and gamma(13), although here it is gamma(11) rather than gamma(13) which predominates. These bands have characters and positions similar to those of three of the four porphyrin ring-based, weak bands that have previously been observed for NiTPP. In addition there are several weaker bands in the TtBP spectra that are also
Resumo:
Iron-5,10,15,20-tetraphenylporphyrin (FeTPP) has been incorporated into films of a coordinating hydrogel polymer support medium, poly(gamma-ethyl-L-glutamate) (PEG) functionalised with imidazole pendant arms (PEG-Im), and studied in situ on silver electrodes using a combination of both resonance Raman (RR) and surface-enhanced resonance Raman (SERR) spectroscopy. The SERR spectra give information on the portion of the film close to the electrode surface while RR spectra probe the
Resumo:
Resonance Raman (RR) spectroscopy has been used to probe the interaction between dipyridophenazine (dppz) complexes of ruthenium(II), [Ru(L)(2)(dppz)](2+) (L = 1,10-phenanthroline (1) and 2,2-bipyridyl (2)), and calf-thymus DNA. Ground electronic state RR spectra at selected probe wavelengths reveal enhancement patterns which reflect perturbation of the dppz-centered electronic transitions in the UV-vis spectra in the presence of DNA. Comparison of the RR spectra recorded of the short-lived MLCT excited states of both complexes in aqueous solution with those of the longer-lived states of the complexes in the DNA environment reveals changes to excited state modes, suggesting perturbation of electronic transitions of the dppz ligand in the excited state as a result of intercalation. The most prominent feature, at 1526 cm(-1), appears in the spectra of both 1 and 2 and is a convenient marker band for intercalation. For 1, the excited state studies have been extended to the A and A enantiomers. The marker band appears at the same frequency for both but with different relative intensities. This is interpreted as reflecting the distinctive response of the enantiomers to the chiral environment of the DNA binding sites. The results, together with some analogous data for other potentially intercalating complexes, are considered in relation to the more general application of time-resolved RR spectroscopy for investigation of intercalative interactions of photoexcited metal complexes with DNA.
Resumo:
Vibrational Raman spectroscopy is now widely recognized as a useful technique for chemical analysis. It has become increasingly popular for the characterization of stable species since the technology which underpins Raman measurements has matured. Time-resolved Raman spectroscopy has also become established as an excellent method for the characterization of transient chemical species but it is not so widely applied. However, the technical advances which have reduced the cost and increased the reliability of conventional: Raman systems can also be exploited in studies of transient species. In some cases it is just as straightforward to record the Raman-spectra of a short-lived transient species as it is to monitor a more stable sample. This raises the possibility of routinely adding time-domain Raman measurements to more conventional Raman techniques, increasing the selectivity of the analysis while retaining its ability to provide spectral information which is characteristic of the species under investigation.