989 resultados para Resolvent Operator
Resumo:
We consider the equation Delta(2)u = g(x, u) >= 0 in the sense of distribution in Omega' = Omega\textbackslash {0} where u and -Delta u >= 0. Then it is known that u solves Delta(2)u = g(x, u) + alpha delta(0) - beta Delta delta(0), for some nonnegative constants alpha and beta. In this paper, we study the existence of singular solutions to Delta(2)u = a(x) f (u) + alpha delta(0) - beta Delta delta(0) in a domain Omega subset of R-4, a is a nonnegative measurable function in some Lebesgue space. If Delta(2)u = a(x) f (u) in Omega', then we find the growth of the nonlinearity f that determines alpha and beta to be 0. In case when alpha = beta = 0, we will establish regularity results when f (t) <= Ce-gamma t, for some C, gamma > 0. This paper extends the work of Soranzo (1997) where the author finds the barrier function in higher dimensions (N >= 5) with a specific weight function a(x) = |x|(sigma). Later, we discuss its analogous generalization for the polyharmonic operator.
Resumo:
In this article, we survey several kinds of trace formulas that one encounters in the theory of single and multi-variable operators. We give some sketches of the proofs, often based on the principle of finite-dimensional approximations to the objects at hand in the formulas.
Resumo:
Let Gamma subset of SL2(Z) be a principal congruence subgroup. For each sigma is an element of SL2(Z), we introduce the collection A(sigma)(Gamma) of modular Hecke operators twisted by sigma. Then, A(sigma)(Gamma) is a right A(Gamma)-module, where A(Gamma) is the modular Hecke algebra introduced by Connes and Moscovici. Using the action of a Hopf algebra h(0) on A(sigma)(Gamma), we define reduced Rankin-Cohen brackets on A(sigma)(Gamma). Moreover A(sigma)(Gamma) carries an action of H 1, where H 1 is the Hopf algebra of foliations of codimension 1. Finally, we consider operators between the levels A(sigma)(Gamma), sigma is an element of SL2(Z). We show that the action of these operators can be expressed in terms of a Hopf algebra h(Z).
Resumo:
In this paper the authors prove that the generalized positive p selfadjoint (GPpS) operators in Banach space satisfy the generalized Schwarz inequality, solve the maximal dissipative extension representation of p dissipative operators in Banach space by using the inequality and introducing the generalized indefinite inner product (GIIP) space, and apply the result to a certain type of Schrodinger operator.
Resumo:
This thesis is a theoretical work on the space-time dynamic behavior of a nuclear reactor without feedback. Diffusion theory with G-energy groups is used.
In the first part the accuracy of the point kinetics (lumped-parameter description) model is examined. The fundamental approximation of this model is the splitting of the neutron density into a product of a known function of space and an unknown function of time; then the properties of the system can be averaged in space through the use of appropriate weighting functions; as a result a set of ordinary differential equations is obtained for the description of time behavior. It is clear that changes of the shape of the neutron-density distribution due to space-dependent perturbations are neglected. This results to an error in the eigenvalues and it is to this error that bounds are derived. This is done by using the method of weighted residuals to reduce the original eigenvalue problem to that of a real asymmetric matrix. Then Gershgorin-type theorems .are used to find discs in the complex plane in which the eigenvalues are contained. The radii of the discs depend on the perturbation in a simple manner.
In the second part the effect of delayed neutrons on the eigenvalues of the group-diffusion operator is examined. The delayed neutrons cause a shifting of the prompt-neutron eigenvalue s and the appearance of the delayed eigenvalues. Using a simple perturbation method this shifting is calculated and the delayed eigenvalues are predicted with good accuracy.
Resumo:
Jet noise reduction is an important goal within both commercial and military aviation. Although large-scale numerical simulations are now able to simultaneously compute turbulent jets and their radiated sound, lost-cost, physically-motivated models are needed to guide noise-reduction efforts. A particularly promising modeling approach centers around certain large-scale coherent structures, called wavepackets, that are observed in jets and their radiated sound. The typical approach to modeling wavepackets is to approximate them as linear modal solutions of the Euler or Navier-Stokes equations linearized about the long-time mean of the turbulent flow field. The near-field wavepackets obtained from these models show compelling agreement with those educed from experimental and simulation data for both subsonic and supersonic jets, but the acoustic radiation is severely under-predicted in the subsonic case. This thesis contributes to two aspects of these models. First, two new solution methods are developed that can be used to efficiently compute wavepackets and their acoustic radiation, reducing the computational cost of the model by more than an order of magnitude. The new techniques are spatial integration methods and constitute a well-posed, convergent alternative to the frequently used parabolized stability equations. Using concepts related to well-posed boundary conditions, the methods are formulated for general hyperbolic equations and thus have potential applications in many fields of physics and engineering. Second, the nonlinear and stochastic forcing of wavepackets is investigated with the goal of identifying and characterizing the missing dynamics responsible for the under-prediction of acoustic radiation by linear wavepacket models for subsonic jets. Specifically, we use ensembles of large-eddy-simulation flow and force data along with two data decomposition techniques to educe the actual nonlinear forcing experienced by wavepackets in a Mach 0.9 turbulent jet. Modes with high energy are extracted using proper orthogonal decomposition, while high gain modes are identified using a novel technique called empirical resolvent-mode decomposition. In contrast to the flow and acoustic fields, the forcing field is characterized by a lack of energetic coherent structures. Furthermore, the structures that do exist are largely uncorrelated with the acoustic field. Instead, the forces that most efficiently excite an acoustic response appear to take the form of random turbulent fluctuations, implying that direct feedback from nonlinear interactions amongst wavepackets is not an essential noise source mechanism. This suggests that the essential ingredients of sound generation in high Reynolds number jets are contained within the linearized Navier-Stokes operator rather than in the nonlinear forcing terms, a conclusion that has important implications for jet noise modeling.
Resumo:
Iantchenko, A.; Jakuba?a-Amundsen, D.H., (2003) 'On the positivity of the Jansen-He? operator for arbitrary mass', Annales of the Institute Henri Poincar? 4 pp.1083-1099 RAE2008
Resumo:
This paper surveys the recent progresses made in the field of unstable denumerable Markov processes. Emphases are laid upon methodology and applications. The important tools of Feller transition functions and Resolvent Decomposition Theorems are highlighted. Their applications particularly in unstable denumerable Markov processes with a single instantaneous state and Markov branching processes are illustrated.
Resumo:
In the scheduling literature, the notion of machine non availability periods is well known, for instance for maintenance. In our case of planning chemical experiments, we have special periods (the week-ends, holidays, vacations) where the chemists are not available. However, human intervention by the chemists is required to handle the starting and termination of the experiments. This gives rise to a new type of scheduling problems, namely problems of finding schedules that respect the operator non availability periods. These problems are analyzed on a single machine with the makespan as criterion. Properties are described and performance ratios are given for list scheduling and other polynomial-time algorithms.