891 resultados para Resistance to infection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to experimentally evaluate infection in Gallus gallus domesticus with Neospora caninum tachyzoites of the NC-1 strain. Experimental infection was conducted in 90-day-old chickens, embryonated eggs and bioassays in dogs. In the first experiment, poults were randomly divided into four groups. Groups I and II were provided feed with coccidiostat, whereas groups III and IV received feed without coccidiostat. When the poults from groups I and III reached 90 days of age, they received a subcutaneous inoculation of N. caninum. Once the hens entered their egg-laying period, during the following 30 days, the eggs were collected, identified, weighed and placed in an incubator. On the 70th day after inoculation, all animals, including the chicks, were euthanized. Tissue samples from the adult poultry and chicks were collected for histopathology, immunohistochemistry (IHC) and PCR. Brain tissue and pectoral muscle samples from infected birds were fed to two dogs. Notably, the average weight of the group III eggs was lower than that of the group IV eggs (p <0.05). No changes consistent with infection in adult poultry or chicks were detected by histopathology or IHC; moreover, no amplified parasite DNA was detected in the birds'tissues or dogs'feces. No dog eliminated oocysts. In the second experiment, the embryonated chicken eggs were inoculated with 1 x 10(2) N. caninum tachyzoites, on the 10th day of incubation, and chicks born from these eggs were housed in boxes suitable for the species and received commercial feed and distilled water ad libitum. On the 30th day after infection (DAI), the poultry were euthanized, and their organs were processed as described in experiment I. The amplification of parasite DNA was observed in the spleen and pectoral muscles of one of the birds. The ingestion of bird tissues by dogs did not result in oocyst elimination. These results indicate that the parasite may have been eliminated by the host and that the use of tachyzoites to induce chronic disease might be a poor source for hens. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(NO)-N-center dot is considered to be a key macrophage-derived cytotoxic effector during Trypanosoma cruzi infection. On the other hand, the microbicidal properties of reactive oxygen species (ROS) are well recognized, but little importance has been attributed to them during in vivo infection with T. cruzi. In order to investigate the role of ROS in T. cruzi infection, mice deficient in NADPH phagocyte oxidase (gp91(phox-/-) or phox KO) were infected with Y strain of T. cruzi and the course of infection was followed. phox KO mice had similar parasitemia, similar tissue parasitism and similar levels of IFN-gamma and TNF in serum and spleen cell culture supernatants, when compared to wild-type controls. However, all phox KO mice succumbed to infection between day 15 and 21 after inoculation with the parasite, while 60% of wild-type mice were alive 50 days after infection. Further investigation demonstrated increased serum levels of nitrite and nitrate (NOx) at day 15 of infection in phox KO animals, associated with a drop in blood pressure. Treatment with a NOS2 inhibitor corrected the blood pressure, implicating NOS2 in this phenomenon. We postulate that superoxide reacts with (NO)-N-center dot in vivo, preventing blood pressure drops in wild type mice. Hence, whilst superoxide from phagocytes did not play a critical role in parasite control in the phox KO animals, its production would have an important protective effect against blood pressure decline during infection with T. cruzi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inheritance of resistance to powdery mildew in the pea cultivar MK-10 and some histological aspects of infection were assessed. For the inheritance study, F1, F2, backcrosses and F3 generations of MK-10 crossed with two susceptible populations were evaluated. Histological evaluations included percentage of germinated conidia, percentage of conidia that formed appresoria, percentage of conidia that established colonies, and number of haustoria per colony. Segregation ratios obtained in the resistance inheritance study were compared by Chi-square (ײ) test and the histological data were analyzed by Tukey's test at 5% probability. It was concluded that resistance of MK-10 to powdery mildew is due to a pair of recessive alleles since it is expressed in the pre-penetration stage and completed by post-penetration localized cellular death, characteristic of the presence of the pair of recessive alleles er1er1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases that can occur spontaneously or can be caused by infection or mutations within the prion protein gene PRNP. Nonsynonymous DNA polymorphisms within the PRNP gene have been shown to influence susceptibility/resistance to infection in sheep and humans. Analysis of DNA polymorphisms within the core promoter region of the PRNP gene in four major German bovine breeds resulted in the identification of both SNPs and insertion/deletion (indel) polymorphisms. Comparative genotyping of both controls and animals that tested positive for bovine spongiform encephalopathy (BSE) revealed a significantly different distribution of two indel polymorphisms and two SNPs within Braunvieh animals, suggesting an association of these polymorphisms with BSE susceptibility. The functional relevance of these polymorphisms was analyzed using reporter gene constructs in neuronal cells. A specific haplotype near exon 1 was identified that exhibited a significantly lower expression level. Genotyping of nine polymorphisms within the promoter region and haplotype calculation revealed that the haplotype associated with the lowest expression level was underrepresented in the BSE group of all breeds compared to control animals, indicating a correlation of reduced PRNP expression and increased resistance to BSE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell wall is a dynamic structure that regulates both constitutive and inducible plant defence responses. Different molecules o DAMPs (damage-associated molecular patterns) can be released from plant cell walls upon pathogen infection or wounding and can trigger immune responses. To further characterize the function of cell wall on the regulation of these immune responses, we have performed a biased resistance screening of putative/well-characterized primary/secondary Arabidopsis thaliana cell wall mutants (cwm). In this screening we have identified more than 20 cwm mutants with altered susceptibility/resistance to at least one of the following pathogens: the necrotrophic fungi Plectosphaerella cucumerina, the vascular bacterium Ralstonia solanacearum, the biotrophic oomycete Hyaloperonospora arabidopsidis and the powdery mildew fungus Erisyphe cruciferarum. We found that cell wall extracts from some of these cwm plants contain novel DAMPs that activate immune responses and conferred enhanced resistance to particular pathogens when they were applied to wild-type plants. Using glycomic profiling we have performed an initial characterization of the active carbohydrate structures present in these cwm wall fractions, and we have determined the signalling pathways regulated by thesse fractions. . The data generated with this collection of wall mutants support the existence of specific correlations between cell wall structure/composition, resistance to particular type of pathogens and plant fitness. Remarkably, we have identified specific cwm mutations that uncoupled resistance to pathogens from plant trade-offs, further indicating the plasticity of wall structures in the regulation of plant immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophages are considered to be the mediators of resistance to extra-intestinal Salmonella infections. Nevertheless, the initial cellular response to Salmonella infections consists primarily of polymorphonuclear leukocytes (PMN). To determine whether PMN serve an important function for the infected host, we made mice neutropenic with the rat mAb to RB6–8C5 and infected them i.v. with ≈103 Salmonella dublin or an isogenic derivative that lacks the virulence plasmid (LD842). We infected BALB/c mice, which have a point mutation in the macrophage-expressed gene Nramp1 that makes them susceptible to Salmonella, and BALB/c.D2 congenic mice, which have the wild-type Nramp1 gene that makes them resistant to Salmonella. Both mouse strains were resistant to LD842, and neutropenia made only the BALB/c strain susceptible to this infection. Neutropenic congenic mice, however, were susceptible only to wild-type S. dublin (plasmid+). These results show a complex interplay between plasmid-virulence genes in Salmonella, host macrophages, and PMN. Mice with normal macrophages need PMN to defend against nontyphoid Salmonella that carry a virulence plasmid but not against Salmonella without virulence plasmids. Mice with a mutant Nramp1 gene need PMN to defend against all Salmonella, even those that lack virulence plasmids. These results, plus the evidence that PMN kill Salmonella efficiently in vitro, suggest that Salmonella have adapted to grow inside macrophages where they are relatively sheltered from PMN. The adaptations that allow Salmonella to survive in macrophages do not protect them from PMN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the efficacy of a hairpin ribozyme targeting the 5′ leader sequence of HIV-1 RNA in a transgenic model system. Primary spleen cells derived from transgenic or control mice were infected with HIV-1/MuLV pseudotype virus. A significantly reduced susceptibility to infection in ribozyme-expressing transgenic spleen cells (P = 0.01) was shown. Variation of transgene-expression levels between littermates revealed a dose response between ribozyme expression and viral resistance, with an estimated cut off value below 0.2 copies of hairpin ribozyme per cell. These findings open up possibilities for studies on ribozyme efficacy and anti-HIV-1 gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endogenous plant hormones salicylic acid (SA) and jasmonic acid (JA), whose levels increase on pathogen infection, activate separate sets of genes encoding antimicrobial proteins in Arabidopsis thaliana. The pathogen-inducible genes PR-1, PR-2, and PR-5 require SA signaling for activation, whereas the plant defensin gene PDF1.2, along with a PR-3 and PR-4 gene, are induced by pathogens via an SA-independent and JA-dependent pathway. An Arabidopsis mutant, coi1, that is affected in the JA-response pathway shows enhanced susceptibility to infection by the fungal pathogens Alternaria brassicicola and Botrytis cinerea but not to Peronospora parasitica, and vice versa for two Arabidopsis genotypes (npr1 and NahG) with a defect in their SA response. Resistance to P. parasitica was boosted by external application of the SA-mimicking compound 2,6-dichloroisonicotinic acid [Delaney, T., et al. (1994) Science 266, 1247–1250] but not by methyl jasmonate (MeJA), whereas treatment with MeJA but not 2,6-dichloroisonicotinic acid elevated resistance to Alternaria brassicicola. The protective effect of MeJA against A. brassicicola was the result of an endogenous defense response activated in planta and not a direct effect of MeJA on the pathogen, as no protection to A. brassicicola was observed in the coi1 mutant treated with MeJA. These data point to the existence of at least two separate hormone-dependent defense pathways in Arabidopsis that contribute to resistance against distinct microbial pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify cellular functions involved in the early phase of the retroviral life cycle, somatic cell mutants were isolated after selection for resistance to infection. Rat2 fibroblasts were treated with chemical mutagens, and individual virus-resistant clones were recovered after selection for resistance to infection. Two clones were characterized in detail. Both mutant lines were resistant to infection by both ecotropic and amphotropic murine viruses, as well as by human immunodeficiency virus type 1 pseudotypes. One clone showed a strong block to reverse transcription of the retroviral RNA, including formation of the earliest DNA products. The second clone showed normal levels of viral DNA synthesis but did not allow formation of the circular DNAs normally found in the nucleus. Cell fractionation showed that the viral preintegration complex was present in a form that could not be extracted under conditions that readily extracted the complex from wild-type cells. The results suggest that the DNA was trapped in a nonproductive state and excluded from the nucleus of the infected cell. The properties of these two mutant lines suggest that host gene products play important roles both before and after reverse transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Friend virus infection of adult immunocompetent mice is a well established model for studying genetic resistance to infection by an immunosuppressive retrovirus. This paper reviews both the genetics of immune resistance and the types of immune responses required for recovery from infection. Specific major histocompatibility complex (MHC) class I and II alleles are necessary for recovery, as is a non-MHC gene, Rfv-3, which controls virus-specific antibody responses. In concordance with these genetic requirements are immunological requirements for cytotoxic T lymphocyte, T helper, and antibody responses, each of which provides essential nonoverlapping functions. The complexity of responses necessary for recovery from Friend virus infection has implications for both immunotherapies and vaccines. For example, it is shown that successful passive antibody therapy is dependent on MHC type because of the requirement for T cell responses. For vaccines, successful immunization requires priming of both T cell and B cell responses. In vivo depletion experiments demonstrate different requirements for CD8+ T cells depending on the vaccine used. The implications of these studies for human retroviral diseases are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the protective cellular immune response to Mycobacterium tuberculosis requires recruitment of macrophages and T lymphocytes to the site of infection, the signals that regulate this trafficking have not been defined. We investigated the role of C-C chemokine receptor 2 (CCR2)-dependent cell recruitment in the protective response to M. tuberculosis. CCR2−/− mice died early after infection and had 100-fold more bacteria in their lungs than did CCR2+/+ mice. CCR2−/− mice exhibited an early defect in macrophage recruitment to the lung and a later defect in recruitment of dendritic cells and T cells to the lung. CCR2−/− mice also had fewer macrophages and dendritic cells recruited to the mediastinal lymph node (MLN) after infection. T cell migration through the MLN was similar in CCR2−/− and CCR2+/+ mice. However, T cell priming was delayed in the MLNs of the CCR2−/− mice, and fewer CD4+ and CD8+ T cells primed to produce IFN-γ accumulated in the lungs of the CCR2−/− mice. These data demonstrate that cellular responses mediated by activation of CCR2 are essential in the initial immune response and control of infection with M. tuberculosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of resistance to sulfadoxine-pyrimethamine by Plasmodium parasites is a major problem for the effective treatment of malaria, especially P. falciparum malaria. Although the molecular basis for parasite resistance is known, the factors promoting the development and transmission of these resistant parasites are less clear. This paper reports the results of a quantitative comparison of factors previously hypothesized as important for the development of drug resistance, drug dosage, time of treatment, and drug elimination half-life, with an in-host dynamics model of P. falciparum malaria in a malaria-naive host. The results indicate that the development of drug resistance can be categorized into three stages. The first is the selection of existing parasites with genetic mutations in the dihydrofolate reductase or dihydropteroate synthetase gene. This selection is driven by the long half-life of the sulfadoxine-pyrimethamine combination. The second stage involves the selection of parasites with allelic types of higher resistance within the host during an infection. The timing of treatment relative to initiation of a specific anti-P. falciparum EMP1 immune response is an important factor during this stage, as is the treatment dosage. During the third stage, clinical treatment failure becomes prevalent as the parasites develop sufficient resistance mutations to survive therapeutic doses of the drug combination. Therefore, the model output reaffirms the importance of correct treatment of confirmed malaria cases in slowing the development of parasite resistance to sulfadoxine-pyrimethamine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-mediated immunity is important for anti-Candida host defence in mucosal tissues. In this study we used cytokine-specific gene knockout mice to investigate the requirement for T helper type 1 (Th1) and Th2 cytokines in recovery from oral candidiasis. Knockout mice used in this study included interleukin-4 (IL-4), IL-10, IL-12p40, interferon-gamma (IFN-gamma), and tumour necrosis factor (TNF). The mice were challenged either orally or systemically with Candida albicans yeasts, and levels of colonization were determined. IL-12p40 knockout mice developed chronic oropharyngeal candidiasis, but were not more susceptible to systemic challenge. On the other hand, TNF knockout mice displayed increased susceptibility to both oral and systemic challenge, but only in the acute stages of infection. TNF apparently has a protective effect in the acute stages of both oral and systemic candidiasis, whereas IL-12p40 is essential for recovery from oral but not systemic candidiasis. The role of IL-12p40, and its relation to T-cell-mediated responses remain to be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterotrimeric G proteinshave been previously linked to plant defense; however a role for the G beta gamma dimer in defense signaling has not been described to date. Using available Arabidopsis (Arabidopsis thaliana) mutants lacking functional G alpha or G beta subunits, we show that defense against the necrotrophic pathogens Alternaria brassicicola and Fusarium oxysporum is impaired in G beta- deficient mutants while G alpha-deficient mutants show slightly increased resistance compared to wild-type Columbia ecotype plants. In contrast, responses to virulent (DC3000) and avirulent (JL1065) strains of Pseudomonas syringae appear to be independent of heterotrimeric G proteins. The induction of a number of defense-related genes in G beta-deficient mutants were severely reduced in response to A. brassicicola infection. In addition, G beta-deficient mutants exhibit decreased sensitivity to a number of methyl jasmonate- induced responses such as induction of the plant defensin gene PDF1.2, inhibition of root elongation, seed germination, and growth of plants in sublethal concentrations of methyl jasmonate. In all cases, the behavior of the G alpha- deficient mutants is coherent with the classic heterotrimeric mechanism of action, indicating that jasmonic acid signaling is influenced by the Gbg functional subunit but not by G alpha. We hypothesize that G beta gamma acts as a direct or indirect enhancer of the jasmonate signaling pathway in plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fusarium oxysporum is a soilborne fungal pathogen that causes major economic losses by inducing necrosis and wilting symptoms in many crop plants. In this study, the interaction between F. oxysporum and the model plant Arabidopsis thaliana has been investigated to better understand the nature of host defences that are effective against the Fusarium wilt pathogen. The expression of salicylate- and jasmonate-responsive defence genes in F. oxysporum-challenged roots of A. thaliana plants as well as in the roots of plants whose leaves were treated with salicylate or jasmonate was analysed. Unexpectedly, genes (e.g. PR1, PDF1.2, and CHIB) encoding proteins with defensive functions or transcription factors (e.g. ERF1, AtERF2, AtERF4 and AtMYC2) known to positively or negatively regulate defences against F. oxysporum were not activated in F. oxysporum-inoculated roots. In contrast, the jasmonate-responsive defence gene PDF1.2 was induced in the leaves of plants whose roots were challenged with F. oxysporum, but the salicylate- responsive PR1 gene was not induced in the leaves of inoculated plants. Exogenous salicylic acid treatment prior to inoculation, however, activated PR1 and BGL2 defence gene expression in leaves and provided increased F. oxysporum resistance as evidenced by reduced foliar necrosis and plant death. Exogenous salicylic acid treatment of the foliar tissue did not activate defence gene expression in the roots of plants. This suggests that salicylate- dependent defences may function in foliar tissue to reduce the development of pathogen-induced wilting and necrosis. Despite the induction of defence gene expression in the leaves by jasmonate, this treatment did not lead to increased resistance to F. oxysporum. Overall, the results presented here suggest that the genetic manipulation of plant defence signalling pathways is a useful strategy to provide increased Fusarium wilt resistance.