864 resultados para Reservoir and semi-arid
Resumo:
The sustainability of cereal/legume intercropping was assessed by monitoring trends in grain yield, soil organic C (SOC) and soil extractable P (Olsen method) measured over 13 years at a long-term field trial on a P-deficient soil in semi-arid Kenya. Goat manure was applied annually for 13 years at 0, 5 and 10 t ha(-1) and trends in grain yield were not identifiable because of season-to-season variations. SOC and Olsen P increased for the first seven years of manure application and then remained constant. The residual effect of manure applied for four years only lasted another seven to eight years when assessed by yield, SOC and Olsen P. Mineral fertilizers provided the same annual rates of N and P as in 5 t ha(-1) manure and initially ,gave the same yield as manure, declining after nine years to about 80%. Therefore, manure applications could be made intermittently and nutrient requirements topped-up with fertilizers. Grain yields for sorghum with continuous manure were described well by correlations with rainfall and manure input only, if data were excluded for seasons with over 500 mm rainfall. A comprehensive simulation model should correctly describe crop losses caused by excess water.
Resumo:
Three goats provided with oesophageal and ruminal cannulae were used to determine variations in dry matter (DM) and neutral-detergent fibre (NDF) degradability of the forage consumed when grazing thorn scrubland in the semi-arid region of north Mexico, during two consecutive dry and wet periods. Ingesta samples were incubated intraruminally, the data were fitted to the exponential equation P = a + b (1-e(-ct)) and statistically analysed using a randomized-block design. Organic matter and crude protein (CP) contents were higher (P < 0.05) in the wet seasons. Values of NDF were similar in dry and wet season of both years whereas higher numerical values of acid-detergent fibre (ADF), lignin and cellulose were registered in the dry seasons. DM and NDF degradabilities after 24 and 48 h of ruminal incubation were higher (P < 0.05) in the wet seasons. Higher values (P < 0.05) in DM and NDF bag losses at zero time (A fraction) were registered in the two wet seasons. The insoluble but fermentable DM and NDF (B fractions) were higher (P < 0.05) in the 1999 wet season and variable in the rest of the studied period. Numerically higher values of DM and NDF c fraction were found in wet periods, whereas DM and NDF potential degradabilities were higher (P < 0.05) in the wet season in 1999 and similar across seasons in 2000. Lowest (P < 0.05) contents of CP in grazed forage, DM and NDF degradabilities after 48 h of ruminal incubation, and A, and B, and c fractions were observed in the dry seasons. Thus, these results may be related to both the lower feeding value of forage consumed by the animals and lower performance of livestock during this period. Then, the DM and NDF degradability after 48 h, together with the insoluble but fermentable matter and the c fraction permit the nutritive value of the forage consumed by grazing goats to be accurately described.
Resumo:
Models are important tools to assess the scope of management effects on crop productivity under different climatic and soil regimes. Accordingly, this study developed and used a simple model to assess the effects of nitrogen fertiliser and planting density on the water use efficiency (q) of maize in semi-arid Kenya. Field experiments were undertaken at Sonning, Berkshire, UK, in 1996 (one sowing) and 1997 (two sowings). The results from the field experiments plus soil and weather data for Machakos, Kenya (1 degree 33'S, 37 degree 14'E and 1560 m above sea level), were then used to predict the effects that N application and planting density may have on water use by a maize crop grown in semi-arid Kenya. The increase in q due to N application was greater under irrigated (15%-19%) than rainfed (7%-8%) conditions. Also, high planting density increased q (by 13%) under irrigation but decreased q (by 17%) under rainfed conditions. The current study has shown the significance of crop modelling techniques in assessing the influence of N and planting density on maize production in one region of semi-arid Kenya where there is high variability of rainfall.
Resumo:
Indehiscent fruits of six tree species, common in Matabeleland were examined in in vitro and in vivo trials. The results for two of them, Acacia nilotica and Dichrostachys cinerea are presented here. Acacia nilotica-contained more total phenolics than D. cinerea, but less nitrogen (N) and fibre (ADF and NDF). After 48 h incubation, in vitro OMD of both species was increased by PEG and NaOH or wood ash treatment, except when NaOH or wood ash were used in combination with PEG with D. cinerea fruits. DM intake, DMD were lowest and N-retention negative in goats fed A. nilotica as supplement. However when fed a supplement of D. cinerea, untreated or treated with PEG or NaOH, digestibility and N-retention were highest, and similar to a commercial goat meal, with the untreated fruit. In a trial in which milking does were supplemented with D. cinerea fruits, for 65 before and 65 days after kidding, kid birthweight and weaning weight were increased by supplementation. Deaths of twin-born kids were lowest in the supplemented but unmilked group. Supplementation with D. cinerea fruit resulted in improved goat performance. The only treatment applied of practical significance, wood ash, is currently being tested in an in vivo study. More research is required on detoxification of tannins, especially with A. nilotica. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Browse plants play an important role in providing feed for livestock in semi-arid rangelands of Africa. Chemical composition and in vitro ruminal fermentation of leaves collected from Acacia burkei, Acacia tortilis, Acacia nilotica, Dichrostachys cinerea and Ehretia obtusifolia in communal grazing lands in the lowveld of Swaziland is presented. Leaves were collected from trees located on two soil types (i.e., lithosol and vertisol) in the communal land but it had no effect on the chemical composition of tree leaves. The NDFom and ADFom content were highest in D. cinerea and A. burkei and lowest in E. obtusifolia and A. nilotica. Crude protein (CP) contents ranged between 108 g/kg and 122 g/kg DM. D. cinerea had the highest Ca and Mg content, while A. tortilis had the lowest. There were marked variations in K level amongst browse species, with A. tortilis (9.1 g/kg DM) having the highest value. The P, Zn and Fe did not differ between browse species. Soil type and tree species interaction impacted in vitro fermentation parameters. Extent of fermentation, as measured by 48 h cumulative gas production, and organic matter degradability was highest in E. obtusifolia leaves and lowest in D. cinerea leaves within soil type. Fermentation efficiency, as measured by partitioning factors, was highest in A. nilotica leaves. Leaves of E. obtusifolia could be a valuable supplementary feedstuff for ruminant livestock due to its in vitro fermentation characteristics as well as low fibre and moderate CP levels. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Organic sweet maize consists of a new industrial crop product. Field experiment was conducted to determine the effects of cultural systems on growth, photosynthesis and yield components of sweet maize crop (Zea mays L. F-1 hybrid 'Midas'). A randomized complete block design was employed with four replicates per treatment (organic fertilization: cow manure (5, 10 and 20 t ha(-1)), poultry manure (5, 10 and 20 t ha(-1)) and barley mulch (5, 10 and 20 t ha(-1)), synthetic fertilizer (240 kg N ha(-1)): 21-0-0 and control). The lowest dry weight, height and leaf area index and sod organic matter were measured in the control treatment. Organic matter content was proportionate to the amount of manure applied. The control plots had the lowest yield (1593 kg ha(-1)) and the double rate cow manure plots the had,greatest one. (6104 kg ha(-1)). High correlation between sweet corn yield and organic matter was registered. Moreover, the lowest values of 1000-grain weight were obtained with control plot. The fertilizer plot gave values which were similar to the full rate cow manure treatment. The photosynthetic race of the untreated control was significantly lower than that of the other treatments. The phorosynthetic rate increased as poultry manure and barley mulch ram decreased and as cow manure increased. Furthermore the untreated control had the lowest stomatal conductance and chlorophyll content. Our results indicated that sweet corn growth and yield in the organic plots was significantly higher than those in the conventional plots.
Resumo:
This study of landscape evolution presents both new modern and palaeo process-landform data, and analyses the behaviour of the Antarctic Peninsula Ice Sheet through the Last Glacial Maximum (LGM), the Holocene and to the present day. Six sediment-landform assemblages are described and interpreted for Ulu Peninsula, James Ross Island, NE Antarctic Peninsula: (1) the Glacier Ice and Snow Assemblage; (2) the Glacigenic Assemblage, which relates to LGM sediments and comprises both erratic-poor and erratic-rich drift, deposited by cold-based and wet-based ice and ice streams respectively; (3) the Boulder Train Assemblage, deposited during a Mid-Holocene glacier readvance; (4) the Ice-cored Moraine Assemblage, found in front of small cirque glaciers; (5) the Paraglacial Assemblage including scree, pebble-boulder lags, and littoral and fluvial processes; and (6) the Periglacial Assemblage including rock glaciers, protalus ramparts, blockfields, solifluction lobes and extensive patterned ground. The interplay between glacial, paraglacial and periglacial processes in this semi-arid polar environment is important in understanding polygenetic landforms. Crucially, cold-based ice was capable of sediment and landform genesis and modification. This landsystem model can aid the interpretation of past environments, but also provides new data to aid the reconstruction of the last ice sheet to overrun James Ross Island.
Resumo:
Purpose The sensitivity of soil organic carbon to global change drivers, according to the depth profile, is receiving increasing attention because of its importance in the global carbon cycle and its potential feedback to climate change. A better knowledge of the vertical distribution of SOC and its controlling factors—the aim of this study—will help scientists predict the consequences of global change. Materials and methods The study area was the Murcia Province (S.E. Spain) under semiarid Mediterranean conditions. The database used consists of 312 soil profiles collected in a systematic grid, each 12 km2 covering a total area of 11,004 km2. Statistical analysis to study the relationships between SOC concentration and control factors in different soil use scenarios was conducted at fixed depths of 0–20, 20–40, 40–60, and 60–100 cm. Results and discussion SOC concentration in the top 40 cm ranged between 6.1 and 31.5 g kg−1, with significant differences according to land use, soil type and lithology, while below this depth, no differences were observed (SOC concentration 2.1–6.8 g kg−1). The ANOVA showed that land use was the most important factor controlling SOC concentration in the 0–40 cm depth. Significant differences were found in the relative importance of environmental and textural factors according to land use and soil depth. In forestland, mean annual precipitation and texture were the main predictors of SOC, while in cropland and shrubland, the main predictors were mean annual temperature and lithology. Total SOC stored in the top 1 m in the region was about 79 Tg with a low mean density of 7.18 kg Cm−3. The vertical distribution of SOC was shallower in forestland and deeper in cropland. A reduction in rainfall would lead to SOC decrease in forestland and shrubland, and an increase of mean annual temperature would adversely affect SOC in croplands and shrubland. With increasing depth, the relative importance of climatic factors decreases and texture becomes more important in controlling SOC in all land uses. Conclusions Due to climate change, impacts will be much greater in surface SOC, the strategies for C sequestration should be focused on subsoil sequestration, which was hindered in forestland due to bedrock limitations to soil depth. In these conditions, sequestration in cropland through appropriate management practices is recommended.
Resumo:
We used a light-use efficiency model of photosynthesis coupled with a dynamic carbon allocation and tree-growth model to simulate annual growth of the gymnosperm Callitris columellaris in the semi-arid Great Western Woodlands, Western Australia, over the past 100 years. Parameter values were derived from independent observations except for sapwood specific respiration rate, fine-root turnover time, fine-root specific respiration rate and the ratio of fine-root mass to foliage area, which were estimated by Bayesian optimization. The model reproduced the general pattern of interannual variability in radial growth (tree-ring width), including the response to the shift in precipitation regimes that occurred in the 1960s. Simulated and observed responses to climate were consistent. Both showed a significant positive response of tree-ring width to total photosynthetically active radiation received and to the ratio of modeled actual to equilibrium evapotranspiration, and a significant negative response to vapour pressure deficit. However, the simulations showed an enhancement of radial growth in response to increasing atmospheric CO2 concentration (ppm) ([CO2]) during recent decades that is not present in the observations. The discrepancy disappeared when the model was recalibrated on successive 30-year windows. Then the ratio of fine-root mass to foliage area increases by 14% (from 0.127 to 0.144 kg C m-2) as [CO2] increased while the other three estimated parameters remained constant. The absence of a signal of increasing [CO2] has been noted in many tree-ring records, despite the enhancement of photosynthetic rates and water-use efficiency resulting from increasing [CO2]. Our simulations suggest that this behaviour could be explained as a consequence of a shift towards below-ground carbon allocation.
Resumo:
The polyculture among vegetables is an activity that to have good results, needs a proper planning. Although it often requires more labor, has several advantages over monoculture, among them is that polycultures are generally are more productive, provide with productivity of various plant constituents and a more balanced human diet, contribute to economic return, economic and yield stability, social benefits and farmer's direct participation in decision-making. The objective of this study was to evaluate agroeconomic indices of polycultures derived from the combination of two cultivars of lettuce with two cultivars of rocket in two cultures strip-intercropped with carrot cultivar 'Brasilia' through uni-multivariate approaches in semi-arid Brazil. The experimental design used was of randomized complete blocks with five replications and the treatments arranged in a factorial scheme of 2 x 2. The treatments consisted of the combination of two lettuce cultivars (Baba de Verao and Taina) with two rocket cultivars (Cultivada and Folha Larga) in two cultures associated with carrot cv. Brasilia. hi each block were grown plots with two lettuce cultivars and two rocket cultivars, and carrot in sole crop. In each system was determined the lettuce leaf yield, rocket green mass yield and carrot commercial yield. Agrieconomic indices such as operational cost, gross and net income, monetary advantage, rate of return, profit margin, land equivalent ratio and yield efficiency for DEA were used to measure the efficiency of intercropping systems. In the bicropping of lettuce and rocket associated with carrot cv. 'Brasilia', suggests the use of lettuce cultivar 'Taina' combined with rocket cultivars 'Cultivada' or 'Folha Larga'. It was observed significant effect of lettuce cultivars in the evaluation of polycultures of lettuce, carrot and rocket, with strong expression for the lettuce cultivar 'Taina'. Both uni- and multivariate approaches were effective in the discrimination of the best polycultures. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present study aimed at determining the influence of condensed tannins present in the Brazilian legume species Mimosa hostilis, Mimosa caesalpinifolia and Bauhinia cheilantha on ruminal degradability, microbial colonization and enzymatic activity. Polyethylene glycol (PEG) was used to reduce the astringency and concentration of soluble condensed tannins. Four ruminally-cannulated Saanen goats (60 +/- 8 kg BW) were fed, in two experimental periods, with a hay diet based on the studied legumes treated or non-treated with PEG. Voluntary intake, microbial colonization, DM, CP, NDF, and ruminal degradability of PEG treated and non-treated forage leaves, as well as pH, ammonia and 1,4 P-endoglucanase activity of the rumen content were evaluated. Astringency and soluble tannin concentration of the studied legumes were reduced by approximately 70% and 50%, respectively, with PEG treatment. Average DM intake was higher for the treated diet (16.76 g DM/kg BW/day against 13.06 g DM/kg BW/day). Percentile values for degradation parameters and for potential and effective degradabilities of DM, CP and NDF were also affected by the tannins, but at different intensities. Electron microscopic observations of ruminally-incubated legume leaves showed a more effective microbial colonization of PEG-treated leaves for all legume species. A decrease in pH and an increase in ammonia concentration and in endoglucanase activity in the ruminal content was also observed for PEG-treated diets at all sampling periods. Condensed tannins of the studied legume species have influenced the adhesion conditions, colonization and enzymatic activity of the microbial ecosystem, and consequently the ruminal degradation of the different dietary fractions. For this reason, the reduction in condensed tannin would be of great importance to improve the nutrition of ruminant feeding of these species. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Experimental data on the precipitation chemistry in the semi-arid savanna of South Africa is presented in this paper. A total of 901 rainwater samples were collected with automatic wet-only samplers at a rural site, Louis Trichardt, and at an industrial site, Amersfoort, from July 1986 to June 1999. The chemical composition of precipitation was analysed for seven inorganic and two organic ions, using ion chromatography. The most abundant ion was SO(4)(2-) and a large proportion of the precipitation is acidic, with 98% of samples at Amersfoort and 94% at Louis Trichardt having a pH below 5.6 ( average pH of 4.4 and 4.9, respectively). This acidity results from a mixture of mineral and organic acids, with mineral acids being the primary contributors to the precipitation acidity in Amersfoort, while at Louis Trichardt, organic and mineral acids contribute equal amounts of acidity. It was found that the composition of rainwater is controlled by five sources: marine, terrigenous, nitrogenous, biomass burning and anthropogenic sources. The relative contributions of these sources at the two sites were calculated. Anthropogenic sources dominate at Amersfoort and biomass burning at Louis Trichardt. Most ions exhibit a seasonal pattern at Louis Trichardt, with the highest concentrations occurring during the austral spring as a result of agricultural activities and biomass combustion, while at Amersfoort it is less pronounced due to the dominance of relatively constant industrial emissions. The results are compared to observations from other African regions.
Resumo:
This work was conducted to evaluate food intake and digestive efficiency of temperate wool and tropic semi-arid hair lambs, according to different concentrate: forage ratios in diet. Twenty-four lambs, averaging 90 +/- 1.8 days old and a mean body weight of 20 +/- 0.69 kg, 12 of them wool lambs, F, from Ideal x Ile de France crossing, and 12 others pure Santa Ines hair lambs, were distributed into a four replication 3 x 2 factorial arrangement consisting of three diets and two genotypes. Experimental diets consisted of: D1 = 60% concentrate mix (C) and 40% Cynodon sp. cv. Tifton-85 hay (F), D2 = 40% C and 60% F, and D3 = 20% C and 80% F. D1 was formulated for a daily gain of 300g per animal. Increasing forage levels in diets resulted in linear reductions (P < 0.01) in DM, OM, CP, TCH and metabolizable energy (ME) intake, and a linear increase (P < 0.01) in NDF ingestion. Tropic semi-arid hair lambs had higher DM, OM, NDF, CP, and TCH intake than temperate wool lambs. Although there were no genotype effects in OM and GE coefficient of digestibility, hair lambs showed more efficient (P < 0.05) digestibility of DM, CP, NDF and TCH. Increases in forage levels of diets corresponded to a negative linear effect (P < 0.01) in the apparent digestibility of DM, OM, CP, TCH and GE, while apparent digestibility of NDF increased linearly (P < 0.01). Total endogenous nitrogen (fecal plus urinary N) for F(1) Ideal x Ilede France wool and Santa Ines hair lambs were, respectively, 182 and 312 mg/kg(0.75) per day. Thus, Santa Ines tropic semi-arid hair lambs showed to be more responsive than F(1) Ideal x Ile de France temperate wool lambs to low quality fibrous diets. (C) 2004 Elsevier B.V. All rights reserved.