998 resultados para Repo, Jemima
Resumo:
The origin of the electrical response of vapor grown carbon nanofiber (VGCNF) + epoxy composites is investigated by studying the electrical behavior of VGCNF with resin, VGCNF with hardener and cured composites, separately. It is demonstrated that the onset of the conductivity is associated to the emergence of a weak disorder regime. It is also shown that the weak disorder regime is related to a hopping depending on the physical properties of the polymer matrix.
Resumo:
With the population ageing effect, the technological developments, and pressure to reduce the cost with healthcare, are reunited the conditions for the development of Ambient Assisted Living (AAL) solutions. This work is a revision of the current state of the art. Its aim is the characterization of the AAL solutions, within the AAL4ALL scope. Therefore, it is presented features, scenarios and projects, referring the limitations and the opportunities for the future developments of prototypes using high level information and technology in AAL environments. Moreover, it is presented guidelines of operation, exposing the conceptual approach, and the discussion and conclusion, which present recommendations and current AAL4ALL project positions in terms of concepts and technologies.
Resumo:
The exponential increase of home-bound persons who live alone and are in need of continuous monitoring requires new solutions to current problems. Most of these cases present illnesses such as motor or psychological disabilities that deprive of a normal living. Common events such as forgetfulness or falls are quite common and have to be prevented or dealt with. This paper introduces a platform to guide and assist these persons (mostly elderly people) by providing multisensory monitoring and intelligent assistance. The platform operates at three levels. The lower level, denominated ‘‘Data acquisition and processing’’performs the usual tasks of a monitoring system, collecting and processing data from the sensors for the purpose of detecting and tracking humans. The aim is to identify their activities in an intermediate level called ‘‘activity detection’’. The upper level, ‘‘Scheduling and decision-making’’, consists of a scheduler which provides warnings, schedules events in an intelligent manner and serves as an interface to the rest of the platform. The idea is to use mobile and static sensors performing constant monitoring of the user and his/her environment, providing a safe environment and an immediate response to severe problems. A case study on elderly fall detection in a nursery home bedroom demonstrates the usefulness of the proposal.
Resumo:
The influence of the dispersion of vapor grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/epoxy composites has been studied. A homogeneous dispersion of the VGCNF does not imply better electrical properties. The presence of well distributed clusters appears to be a key factor for increasing composite conductivity. It is also shown that the main conduction mechanism has an ionic nature for concentrations below the percolation threshold, while above the percolation threshold it is dominated by hopping between the fillers. Finally, using the granular system theory it is possible to explain the origin of conduction at low temperatures.
Resumo:
Digital thermal imaging has been employed in medicine for over 50 years. However, its use has been focused on vascular, musculoskeletal and neurological conditions, while other potential applications,such as obstetrics, have been much less explored. This paper presents a study conducted during 2011 at the Hospital of Braga on a group of healthy pregnant women in the last third of gestation. The analysis focused on characterizing typical pregnant women steady temperature profiles in specific defined regions of interest (ROI), and determining if the thermal symmetry values for late pregnant healthy women are in line with the values for non-pregnant healthy women. A temperature distribution pattern was found in the defined ROI. The obtained thermal symmetry value had a maximum of 0.370.2 1C, and there was no evidence for the influence of age (p40.05) in the observed group. The influence of the BMI requires further investigation since one ROI (P2 right) presented a p¼0.059, close to the threshold of statistical evidence in the influence of BMI. The study group presented symmetry values in line with non-pregnant reference values, but the profiles in temperature distribution are different. Assumptions can therefore now be used with higher confidence when assessing abnormalities in specific pathologic states during pregnancy using the defined ROI. This work represents a first contribution towards establishing guidelines for future research in this specific field of study.
Resumo:
This work focused on the study of the impact event on molded parts in the framework of automotive components. The influence of the impact conditions and processing parameters on the mechanical behavior of talc-filled polypropylene specimens was analyzed. The specimens were lateral-gate discs produced by injection molding, and the mechanical characterization was performed through instrumented falling weight impact tests concomitantly assisted with high-speed videography. Results analyzed using the analysis of variance (ANOVA) method have shown that from the considered parameters, only the dart diameter and test temperature have significant influence on the falling weight impact properties. Higher dart diameter leads to higher peak force and peak energy results. Conversely, higher levels of test temperatures lead to lower values of peak force and peak energy. By means of high-speed videography, a more brittle fracture was observed for experiments with higher levels of test velocity and dart diameter and lower levels of test temperature. The injection-molding process conditions assessed in this study have an influence on the impact response of moldings, mainly on the deformation capabilities of the moldings.
Resumo:
This paper presents experimental results of the communication performance evaluation of a prototype ZigBee-based patient monitoring system commissioned in an in-patient floor of a Portuguese hospital (HPG – Hospital Privado de Guimar~aes). Besides, it revisits relevant problems that affect the performance of nonbeacon-enabled ZigBee networks. Initially, the presence of hidden-nodes and the impact of sensor node mobility are discussed. It was observed, for instance, that the message delivery ratio in a star network consisting of six wireless electrocardiogram sensor devices may decrease from 100% when no hidden-nodes are present to 83.96% when half of the sensor devices are unable to detect the transmissions made by the other half. An additional aspect which affects the communication reliability is a deadlock condition that can occur if routers are unable to process incoming packets during the backoff part of the CSMA-CA mechanism. A simple approach to increase the message delivery ratio in this case is proposed and its effectiveness is verified. The discussion and results presented in this paper aim to contribute to the design of efficient networks,and are valid to other scenarios and environments rather than hospitals.
Resumo:
In this work the critical indices β, γ , and ν for a three-dimensional (3D) hardcore cylinder composite system with short-range interaction have been obtained. In contrast to the 2D stick system and the 3D hardcore cylinder system, the determined critical exponents do not belong to the same universality class as the lattice percolation,although they obey the common hyperscaling relation for a 3D system. It is observed that the value of the correlation length exponent is compatible with the predictions of the mean field theory. It is also shown that, by using the Alexander-Orbach conjuncture, the relation between the conductivity and the correlation length critical exponents has a typical value for a 3D lattice system.
Resumo:
Four dispersion methods were used for the preparation of vapour grown carbon nanofibre (VGCNF)/epoxy composites. It is shown that each method induces certain levels of VGCNF dispersion and distribution within the matrix, and that these have a strong influence on the composite electrical properties. A homogenous VGCNF dispersion does not necessarily imply higher electrical conductivity. In fact, it is concluded that the presence of well distributed clusters, rather than a fine dispersion, is more important for achieving larger conductivities for a given VGCNF concentration. It is also found that the conductivity can be described by a weak disorder regime.
Resumo:
By identifying energy waste streams in vehicles fuel consumption and introducing the concept of lean driving systems, a technological gap for reducing fuel consumption was identified. This paper proposes a solution to overcome this gap, through a modular vehicle architecture aligned with driving patterns. It does not address detailed technological solutions; instead it models the potential effects in fuel consumption through a modular concept of a vehicle and quantifies their dependence on vehicle design parameters (manifesting as the vehicle mass) and user behavior parameters (driving patterns manifesting as the use of a modular car in lighter and heavier mode, in urban and highway cycles). Modularity has been functionally applied in automotive industry as manufacture and assembly management strategies; here it is thought as a product development strategy for flexibility in use, driven by environmental concerns and enabled by social behaviors. The authors argue this concept is a step forward in combining technological solutions and social behavior, of which eco-driving is a vivid example, and potentially evolutionary to a lean, more sustainable, driving culture.
Resumo:
In this work it is demonstrated that the capacitance between two cylinders increases with the rotation angle and it has a fundamental influence on the composite dielectric constant. The dielectric constant is lower for nematic materials than for isotropic ones and this can be attributed to the effect of the filler alignment in the capacitance. The effect of aspect ratio in the conductivity is also studied in this work. Finally, based on previous work and by comparing to results from the literature it is found that the electrical conductivity in this type of composites is due to hopping between nearest fillers resulting in a weak disorder regime that is similar to the single junction expression.
Resumo:
Developed societies are currently facing severe demographic changes: the world population is ageing at an unprecedented rate. This demographic trend will be also followed by an increase of people with physical limitations. New challenges are being raised to the traditional health care systems, not only in Portugal, but also in all other European states. There is an urgent need to find solutions that allow extending the time people can live in their preferred environment by increasing their autonomy, self-confidence and mobility. AAL4ALL is a project currently being developed in cooperation with 34 Portuguese interdisciplinary partners, from industry to academia, R&D and social disciplines, which employs a novel conceptual approach through the development of an ecosystem of products and services for Ambient Assisted Living (AAL) associated to a business model and validated through large scale trial. This paper presents a comparative perspective of the needs and attitudes towards technology of the AAL users and caregivers identified in the analysis of a set of three different surveys: a users survey targeted at the Portuguese seniors and pre-seniors; an informal caregivers survey targeted at the family, friends and neighbours who provide care without any financial compensation; and a formal caregivers survey targeted at physicians, nurses,psychologists, social workers, and direct-care workers providing care to elders. The first results indicate that AAL solutions must be affordable,user friendly and have a true perceived benefit to their users.
Resumo:
According to the opinion of clinicians, emerging medical conditions can be timely detected by observing changes in the activities of daily living and/or in the physiological signals of a person. To accomplish such purpose, it is necessary to properly monitor both the person’s physiological signals as well as the home environment with sensing technology. Wireless sensor networks (WSNs) are a promising technology for this support. After receiving the data from the sensor nodes, a computer processes the data and extracts information to detect any abnormality. The computer runs algorithms that should have been previously developed and tested in real homes or in living-labs. However, these installations (and volunteers) may not be easily available. In order to get around that difficulty, this paper suggests the making of a physical model to emulate basic actions of a user at home, thus giving autonomy to researchers wanting to test the performance of their algorithms. This paper also studies some data communication issues in mobile WSNs namely how the orientation of the sensor nodes in the body affects the received signal strength, as well as retransmission aspects of a TDMA-based MAC protocol in the data recovery process.
Resumo:
Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
Elders lose independence and wellbeing, accompanied by decreased functions in terms of hearing, vision, strength and coordination abilities. These factors contribute to balance difficulties that eventually lead to falls. The injuries due to falls, at this age, are risky, since most of the times may cause a significant – and permanent – decrease of quality of life or, in extreme cases, death. In this context, a fall detection system can bring an added value to assist elderly people.This paper describes a system consisting of a wearable sensor unit, a smartphone and a website. When the sensor detects a fall it sends an alert using the smartphone via Bluetooth 4.0, to notify the family members or stakeholders. The sensor device includes an inertial unit, a barometer, and a temperature and humidity sensor. The website displays the log of previous falls and enables the configuration of emergency contact numbers. The proposed fall detection system is one of multiple components within a larger project under development that offers a holistic perspective on falls; the complete wearable solution will also feature, among others, physical protection (minimizing the impact of falls that occur).