967 resultados para Repetitive DNA sequences
Resumo:
Phylogenetic relationships and divergence times for 10 populations of the three recognized ""species"" of Brazilian lizards of genus Eurolophosaurus were estimated from 1229 bp of cyt b, COI, 12S, and 16S rRNA mitochondrial gene segments. Eurolophosaurus is monophyletic and the basal split within the genus separates E divaricatus from a clade comprising E amathites and E nanuzae. Three populations of E divaricatus, which occurs along the western bank of Rio S (a) over tildeo Francisco, were consistently grouped together. Oil the east bank of the river, E amathites and E nanuzae from state of Bahia were recovered as the sister group of E nanuzae populations from state of Minas Gerais. The paraphyly of E nanuzae and the high divergence levels among populations of E divaricatus strongly suggest that species limits in Eurolophosaurus should be revised. Even considering an extreme evolutionary rate of 2.8% sequence divergence per million years for the four gene segments analyzed together, E. divaricatus would have separated from the two other species by at least 5.5 my ago, and E. amathites from E nanuzae populations from Bahia and Minas Gerais, respectively, by 1.5 and 3.5 my. The paleolacustrine hypothesis and changes in the course of the river potentially explain faunal divergence in the area, but divergences are much older than previously admitted. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Calyptommatus and Nothobachia genera of gymnophthalmid lizards are restricted to sandy open habitats on Sao Francisco River margins, northeastern Brazil. Phylogenetic relationships and geographic distribution of the four recognized species of Calyptommatus were analyzed from partial mitochondrial cyt b, 12S, and 16S rRNA genes sequencing, taking allopatric populations of the monotypic Nothobachia ablephara as the outgroup. In Calyptommatus a basal split separated C. sinebrachiatus, a species restricted to the eastern bank of the river, from the three other species. In this clade, C. confusionibus, found on western margin, was recovered as the sister group of the two other species, C. leiolepis and C. nicterus, from opposite margins. According to approximate date estimations, C. sinebrachiatus would have separated from the other congeneric species by 4.4-6.5 my, and C. nicterus, also from eastern bank, would be diverging by 1.8-2.6 my from C. leiolepis, the sister species on the opposite margin. C. confusionibus and C. leiolepis, both from western sandy areas, would be differentiating by 2.8-5.0 my. Divergence times of about 3.0-4.0 my were estimated for allopatric populations of Nothobachia restricted to western margin. Significant differences in 16S rRNA secondary structure relatively to other vertebrates are reported. Distinct evolutionary patterns are proposed for different taxa in those sandy areas, probably related to historical changes in the course of Sao Francisco River. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Parsimony-based phylogenetic analyses of the neotropical tribe Helieae (Gentianaceae) are presented, including 22 of the 23 genera and 60 species. This study is based on data from morphology, palynology, and seed micromorphology (127 structural characters), and DNA sequences (matK, trnL intron, ITS). Phylogenetic reconstructions based on ITS and morphology provided the greatest resolution, morphological data further helping to tentatively place several taxa for which DNA was not available (Celiantha, Lagenanthus, Rogersonanthus, Roraimaea, Senaea, Sipapoantha, Zonanthus). Celiantha, Prepusa and Senaea together appear as the sister clade to the rest of Helieae. The remainder of Helieae is largely divided into two large subclades, the Macrocarpaea subclade and the Symbolanthus subclade. The first subclade includes Macrocarpaea, sister to Chorisepalum, Tochia, and Zonanthus. Irlbachia and Neblinantha are placed as sisters to the Symbolanthus subclade, which includes Aripuana, Calolisianthus, Chelonanthus, Helia, Lagenanthus, Lehmanniella, Purdieanthus, Rogersonanthus, Roraimaea, Sipapoantha, and symbolanthus. Generic-level polyphyly is detected in Chelonanthus and Irlbachia. Evolution of morphological characters is discussed, and new pollen and seed characters are evaluated for the first time in a combined morphological-molecular phylogenetic analysis.
Resumo:
The Nile tilapia (Oreochromis niloticus) has received increasing scientific interest over the past few decades for two reasons: first, tilapia is an enormously important species in aquaculture worldwide, especially in regions where there is a chronic shortage of animal protein; and second, this teleost fish belongs to the fascinating group of cichlid fishes that have undergone a rapid and extensive radiation of much interest to evolutionary biologists. Currently, studies based on physical and genetic mapping of the Nile tilapia genome offer the best opportunities for applying genomics to such diverse questions and issues as phylogeography, isolation of quantitative trait loci involved in behaviour, morphology, and disease, and overall improvement of aquacultural stocks. In this review, we have integrated molecular cytogenetic data for the Nile tilapia describing the chromosomal location of the repetitive DNA sequences, satellite DNAs, telomeres, 45S and 5S rDNAs, and the short and long interspersed nucleotide elements [short interspersed nuclear elements (SINEs) and long interspersed nuclear elements (LINEs)], and provide the beginnings of a physical genome map for this important teleost fish. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements
Resumo:
We report a method for studying global DNA methylation based on using bisulfite treatment of DNA and simultaneous PCR of multiple DNA repetitive elements, such as Alu elements and long interspersed nucleotide elements (LINE). The PCR product, which represents a pool of approximately 15000 genomic loci, could be used for direct sequencing, selective restriction digestion or pyrosequencing, in order to quantitate DNA methylation. By restriction digestion or pyrosequencing, the assay was reproducible with a standard deviation of only 2% between assays. Using this method we found that almost two-thirds of the CpG methylation sites in Alu elements are mutated, but of the remaining methylation target sites, 87% were methylated. Due to the heavy methylation of repetitive elements, this assay was especially useful in detecting decreases in DNA methylation, and this assay was validated by examining cell lines treated with the methylation inhibitor 5-aza-2'deoxycytidine (DAC), where we found a 1-16% decrease in Alu element and 18-60% LINE methylation within 3 days of treatment. This method can be used as a surrogate marker of genome-wide methylation changes. In addition, it is less labor intensive and requires less DNA than previous methods of assessing global DNA methylation.
Resumo:
Comparative genomic hybridization (CGH) was used to identify chromosomal imbalances in 19 samples of squamous cell carcinoma of the head and neck (HNSCC). The chromosome arms most often or er-represented were 3q (48%), 8q (42%), and 7p (32%); in many cases, these changes were observed at high copy number. Other commonly over-represented sites were 1q, 2q, 6p, 6q, and 18q. The most frequently under-represented segments were 3p and 22q. Loss of heterozygosity of two polymorphic microsatellite loci from chromosome 22 was observed in two tongue tumors, in agreement with the CGH analysis. Gains of 1q and 2q material were detected in patients exhibiting a clinical history of recurrence and/or metastasis followed by terminal disease. This association suggests that gain of 1q and 2q map be a new marker of head and neck tumors with a refractory clinical response. (C) 2000 Elsevier B.V. All rights reserved.
Resumo:
Chromosome mapping and studies of the genomic organization of repetitive DNA sequences provide valuable insights that enhance our evolutionary and structural understanding of these sequences, as well as identifying chromosomal rearrangements and sex determination. This study investigated the occurrence and organization of repetitive DNA sequences in Leporinus elongatus using restriction enzyme digestion and the mapping of sequences by chromosomal fluorescence in situ hybridization (FISH). A 378-bp fragment with a 54.2% GC content was isolated after digestion with the SmaI restriction enzyme. BLASTN search found no similarity with previously described sequences, so this repetitive sequence was named LeSmaI. FISH experiments were conducted using L. elongatus and other Anostomidae species, i.e. L. macrocephalus,L. obtusidens, L. striatus, L. lacustris, L. friderici, Schizodon borellii, S. isognathus, and Abramites hypselonotus which detected signals that were unique to male and female L. elongatus individuals. Double-FISH using LeSmaI and 18S rDNA showed that LeSmaI was located in a nucleolus organizer region (NOR) in the male and female metaphases of L. elongatus. This report also discusses the role of repetitive DNA associated with NORs in the diversification of Anostomidae species karyotypes. Copyright © 2012 S. Karger AG, Basel.
Resumo:
•Relationships of Cheirodontinae based on a broad taxonomic sample.•Results reject the monophyly of Cheirodontinae as previously conceived.•Exclusion of Amazonspinther and Spintherobolus from the subfamily Cheirodontinae.•The removal of Leptagoniates pi of the genus Leptagoniates and inclusion in Cheirodontinae.•Division of Cheirodontinae in three newly defined monophyletic tribes. Characidae is the most species-rich family of freshwater fishes in the order Characiformes, with more than 1000 valid species that correspond to approximately 55% of the order. Few hypotheses about the composition and internal relationships within this family are available and most fail to reach an agreement. Among Characidae, Cheirodontinae is an emblematic group that includes 18 genera (1 fossil) and approximately 60 described species distributed throughout the Neotropical region. The taxonomic and systematic history of Cheirodontinae is complex, and only two hypotheses about the internal relationships in this subfamily have been reported to date. In the present study, we test the composition and relationships of fishes assigned to Cheirodontinae based on a broad taxonomic sample that also includes some characid incertae sedis taxa that were previously considered to be part of Cheirodontinae. We present phylogenetic analyses of a large molecular dataset of mitochondrial and nuclear DNA sequences. Our results reject the monophyly of Cheirodontinae as previously conceived, as well as the tribes Cheirodontini and Compsurini, and the genera Cheirodon, Compsura, Leptagoniates, Macropsobrycon, Odontostilbe, and Serrapinnus. On the basis of these results we propose: (1) the exclusion of Amazonspinther and Spintherobolus from the subfamily Cheirodontinae since they are the sister-group of all remaining Characidae; (2) the removal of Macropsobrycon xinguensis of the genus Macropsobrycon; (3) the removal of Leptagoniates pi of the genus Leptagoniates; (4) the inclusion of Leptagoniates pi in the subfamily Cheirodontinae; (5) the removal of Cheirodon stenodon of the genus Cheirodon and its inclusion in the subfamily Cheirodontinae under a new genus name; (6) the need to revise the polyphyletic genera Compsura, Odontostilbe, and Serrapinnus; and (7) the division of Cheirodontinae in three newly defined monophyletic tribes: Cheirodontini, Compsurini, and Pseudocheirodontini. Our results suggest that our knowledge about the largest Neotropical fish family, Characidae, still is incipient. © 2013 Elsevier Inc..