968 resultados para Relevant features
Resumo:
The automatic disambiguation of word senses (i.e., the identification of which of the meanings is used in a given context for a word that has multiple meanings) is essential for such applications as machine translation and information retrieval, and represents a key step for developing the so-called Semantic Web. Humans disambiguate words in a straightforward fashion, but this does not apply to computers. In this paper we address the problem of Word Sense Disambiguation (WSD) by treating texts as complex networks, and show that word senses can be distinguished upon characterizing the local structure around ambiguous words. Our goal was not to obtain the best possible disambiguation system, but we nevertheless found that in half of the cases our approach outperforms traditional shallow methods. We show that the hierarchical connectivity and clustering of words are usually the most relevant features for WSD. The results reported here shed light on the relationship between semantic and structural parameters of complex networks. They also indicate that when combined with traditional techniques the complex network approach may be useful to enhance the discrimination of senses in large texts. Copyright (C) EPLA, 2012
Resumo:
The quark gluon plasma (QGP) at zero temperature and high baryon number is a system that may be present inside compact stars. It is quite possible that this cold QGP shares some relevant features with the hot QGP observed in heavy ion collisions, being also a strongly interacting system. In a previous work we have derived from the QCD Lagrangian an equation of state (EOS) for the cold QGP, which can be considered an improved version of the MIT bag-model EOS. Compared to the latter, our EOS reaches higher values of the pressure at comparable baryon densities. This feature is due to perturbative corrections and also to nonperturbative effects. Here we apply this EOS to the study of neutron stars, discussing the absolute stability of quark matter and computing the mass-radius relation for self-bound (strange) stars. The maximum masses of the sequences exceed two solar masses, in agreement with the recently measured values of the mass of the pulsar PSR J1614-2230, and the corresponding radii of around 10-11 km.
Resumo:
Neuronal networks exhibit diverse types of plasticity, including the activity-dependent regulation of synaptic functions and refinement of synaptic connections. In addition, continuous generation of new neurons in the “adult” brain (adult neurogenesis) represents a powerful form of structural plasticity establishing new connections and possibly implementing pre-existing neuronal circuits (Kempermann et al, 2000; Ming and Song, 2005). Neurotrophins, a family of neuronal growth factors, are crucially involved in the modulation of activity-dependent neuronal plasticity. The first evidence for the physiological importance of this role evolved from the observations that the local administration of neurotrophins has dramatic effects on the activity-dependent refinement of synaptic connections in the visual cortex (McAllister et al, 1999; Berardi et al, 2000; Thoenen, 1995). Moreover, the local availability of critical amounts of neurotrophins appears to be relevant for the ability of hippocampal neurons to undergo long-term potentiation (LTP) of the synaptic transmission (Lu, 2004; Aicardi et al, 2004). To achieve a comprehensive understanding of the modulatory role of neurotrophins in integrated neuronal systems, informations on the mechanisms about local neurotrophins synthesis and secretion as well as ditribution of their cognate receptors are of crucial importance. In the first part of this doctoral thesis I have used electrophysiological approaches and real-time imaging tecniques to investigate additional features about the regulation of neurotrophins secretion, namely the capability of the neurotrophin brain-derived neurotrophic factor (BDNF) to undergo synaptic recycling. In cortical and hippocampal slices as well as in dissociated cell cultures, neuronal activity rapidly enhances the neuronal expression and secretion of BDNF which is subsequently taken up by neurons themselves but also by perineuronal astrocytes, through the selective activation of BDNF receptors. Moreover, internalized BDNF becomes part of the releasable source of the neurotrophin, which is promptly recruited for activity-dependent recycling. Thus, we described for the first time that neurons and astrocytes contain an endocytic compartment competent for BDNF recycling, suggesting a specialized form of bidirectional communication between neurons and glia. The mechanism of BDNF recycling is reminiscent of that for neurotransmitters and identifies BDNF as a new modulator implicated in neuro- and glio-transmission. In the second part of this doctoral thesis I addressed the role of BDNF signaling in adult hippocampal neurogenesis. I have generated a transgenic mouse model to specifically investigate the influence of BDNF signaling on the generation, differentiation, survival and connectivity of newborn neurons into the adult hippocampal network. I demonstrated that the survival of newborn neurons critically depends on the activation of the BDNF receptor TrkB. The TrkB-dependent decision regarding life or death in these newborn neurons takes place right at the transition point of their morphological and functional maturation Before newborn neurons start to die, they exhibit a drastic reduction in dendritic complexity and spine density compared to wild-type newborn neurons, indicating that this receptor is required for the connectivity of newborn neurons. Both the failure to become integrated and subsequent dying lead to impaired LTP. Finally, mice lacking a functional TrkB in the restricted population of newborn neurons show behavioral deficits, namely increased anxiety-like behavior. These data suggest that the integration and establishment of proper connections by newly generated neurons into the pre-existing network are relevant features for regulating the emotional state of the animal.
Resumo:
Healthcare, Human Computer Interfaces (HCI), Security and Biometry are the most promising application scenario directly involved in the Body Area Networks (BANs) evolution. Both wearable devices and sensors directly integrated in garments envision a word in which each of us is supervised by an invisible assistant monitoring our health and daily-life activities. New opportunities are enabled because improvements in sensors miniaturization and transmission efficiency of the wireless protocols, that achieved the integration of high computational power aboard independent, energy-autonomous, small form factor devices. Application’s purposes are various: (I) data collection to achieve off-line knowledge discovery; (II) user notification of his/her activities or in case a danger occurs; (III) biofeedback rehabilitation; (IV) remote alarm activation in case the subject need assistance; (V) introduction of a more natural interaction with the surrounding computerized environment; (VI) users identification by physiological or behavioral characteristics. Telemedicine and mHealth [1] are two of the leading concepts directly related to healthcare. The capability to borne unobtrusiveness objects supports users’ autonomy. A new sense of freedom is shown to the user, not only supported by a psychological help but a real safety improvement. Furthermore, medical community aims the introduction of new devices to innovate patient treatments. In particular, the extension of the ambulatory analysis in the real life scenario by proving continuous acquisition. The wide diffusion of emerging wellness portable equipment extended the usability of wearable devices also for fitness and training by monitoring user performance on the working task. The learning of the right execution techniques related to work, sport, music can be supported by an electronic trainer furnishing the adequate aid. HCIs made real the concept of Ubiquitous, Pervasive Computing and Calm Technology introduced in the 1988 by Marc Weiser and John Seeley Brown. They promotes the creation of pervasive environments, enhancing the human experience. Context aware, adaptive and proactive environments serve and help people by becoming sensitive and reactive to their presence, since electronics is ubiquitous and deployed everywhere. In this thesis we pay attention to the integration of all the aspects involved in a BAN development. Starting from the choice of sensors we design the node, configure the radio network, implement real-time data analysis and provide a feedback to the user. We present algorithms to be implemented in wearable assistant for posture and gait analysis and to provide assistance on different walking conditions, preventing falls. Our aim, expressed by the idea to contribute at the development of a non proprietary solutions, driven us to integrate commercial and standard solutions in our devices. We use sensors available on the market and avoided to design specialized sensors in ASIC technologies. We employ standard radio protocol and open source projects when it was achieved. The specific contributions of the PhD research activities are presented and discussed in the following. • We have designed and build several wireless sensor node providing both sensing and actuator capability making the focus on the flexibility, small form factor and low power consumption. The key idea was to develop a simple and general purpose architecture for rapid analysis, prototyping and deployment of BAN solutions. Two different sensing units are integrated: kinematic (3D accelerometer and 3D gyroscopes) and kinetic (foot-floor contact pressure forces). Two kind of feedbacks were implemented: audio and vibrotactile. • Since the system built is a suitable platform for testing and measuring the features and the constraints of a sensor network (radio communication, network protocols, power consumption and autonomy), we made a comparison between Bluetooth and ZigBee performance in terms of throughput and energy efficiency. Test in the field evaluate the usability in the fall detection scenario. • To prove the flexibility of the architecture designed, we have implemented a wearable system for human posture rehabilitation. The application was developed in conjunction with biomedical engineers who provided the audio-algorithms to furnish a biofeedback to the user about his/her stability. • We explored off-line gait analysis of collected data, developing an algorithm to detect foot inclination in the sagittal plane, during walk. • In collaboration with the Wearable Lab – ETH, Zurich, we developed an algorithm to monitor the user during several walking condition where the user carry a load. The remainder of the thesis is organized as follows. Chapter I gives an overview about Body Area Networks (BANs), illustrating the relevant features of this technology and the key challenges still open. It concludes with a short list of the real solutions and prototypes proposed by academic research and manufacturers. The domain of the posture and gait analysis, the methodologies, and the technologies used to provide real-time feedback on detected events, are illustrated in Chapter II. The Chapter III and IV, respectively, shown BANs developed with the purpose to detect fall and monitor the gait taking advantage by two inertial measurement unit and baropodometric insoles. Chapter V reports an audio-biofeedback system to improve balance on the information provided by the use centre of mass. A walking assistant based on the KNN classifier to detect walking alteration on load carriage, is described in Chapter VI.
Resumo:
Definition of acute renal allograft rejection (AR) markers remains clinically relevant. Features of T-cell-mediated AR are tubulointerstitial and vascular inflammation associated with excessive extracellular matrix (ECM) remodeling, regulated by metzincins, including matrix metalloproteases (MMP). Our study focused on expression of metzincins (METS), and metzincins and related genes (MARGS) in renal allograft biopsies using four independent microarray data sets. Our own cases included normal histology (N, n = 20), borderline changes (BL, n = 4), AR (n = 10) and AR + IF/TA (n = 7). MARGS enriched in all data sets were further examined on mRNA and/or protein level in additional patients. METS and MARGS differentiated AR from BL, AR + IF/TA and N in a principal component analysis. Their expression changes correlated to Banff t- and i-scores. Two AR classifiers, based on METS (including MMP7, TIMP1), or on MARGS were established in our own and validated in the three additional data sets. Thirteen MARGS were significantly enriched in AR patients of all data sets comprising MMP7, -9, TIMP1, -2, thrombospondin2 (THBS2) and fibrillin1. RT-PCR using microdissected glomeruli/tubuli confirmed MMP7, -9 and THBS2 microarray results; immunohistochemistry showed augmentation of MMP2, -9 and TIMP1 in AR. TIMP1 and THBS2 were enriched in AR patient serum. Therefore, differentially expressed METS and MARGS especially TIMP1, MMP7/-9 represent potential molecular AR markers.
Resumo:
When bivalent stimuli (i.e., stimuli with relevant features for two different tasks) occur occasionally among univalent stimuli, performance is slowed on subsequent univalent stimuli even if they have no overlapping stimulus features. This finding has been labeled the bivalency effect. It indexes an adjustment of cognitive control, but the underlying mechanism is not well understood yet. The purpose of the present study was to shed light on this question, using event-related potentials. We used a paradigm requiring predictable alternations between three tasks, with bivalent stimuli occasionally occurring on one task. The results revealed that the bivalency effect elicited a sustained parietal positivity and a frontal negativity, a neural signature that is typical for control processes implemented to resolve interference. We suggest that the bivalency effect reflects interference, which may be caused by episodic context binding.
Resumo:
Atrial fibrillation (AF) is the most common cardiac arrhythmia, and is responsible for the highest number of rhythm-related disorders and cardioembolic strokes worldwide. Intracardiac signal analysis during the onset of paroxysmal AF led to the discovery of pulmonary vein as a triggering source of AF, which has led to the development of pulmonary vein ablation--an established curative therapy for drug-resistant AF. Complex, multicomponent and rapid electrical activity widely involving the atrial substrate characterizes persistent/permanent AF. Widespread nature of the problem and complexity of signals in persistent AF reduce the success rate of ablation therapy. Although signal processing applied to extraction of relevant features from these complex electrograms has helped to improve the efficacy of ablation therapy in persistent/permanent AF, improved understanding of complex signals should help to identify sources of AF and further increase the success rate of ablation therapy.
Resumo:
Technology has been gradually introduced in heath education. One of the most attractive features of this technology-based education is the use of multimedia. In this article we explore the research evidence about the role that multimedia is playing in education. From that analysis we describe the most relevant features of this technology to prepare a common ground of discussion about the evaluation of its impact on educational outcomes. As part of this analysis, we organize current research evidence on the use of technology in medical education, distinguishing diverse variables involved in the process, like knowledge (declarative, procedural), learner characteristics, curricular scenario, etc. This article presents an overview of the Distributed Representations theory and its relationship with research on educational outcomes and multimedia. Next we discuss the relationship between media and diverse learning theories, proposing a theory based taxonomy for educational multimedia.
Resumo:
When switching tasks, occasionally responding to bivalent stimuli (i.e., stimuli with relevant features for two different tasks) slows performance on subsequent univalent stimuli, even when they do not share relevant features with bivalent stimuli. This performance slowing is labelled the bivalency effect here, we investigated whether the bivalency effect results from an orienting response to the infrequent stimuli (i.e., the bivalent stimuli). To this end, we compared the impact of responding to infrequent univalent stimuli to the impact of responding to infrequent bivalent stimuli. For the latter, the results showed a performance slowing for all trials following bivalent stimuli. This indicates a long-lasting bivalency effect, replicating previous findings. For infrequent univalent stimuli, however, the results showed a smaller and shorter-lived performance slowing. These results demonstrate that the bivalency effect does not simply reflect an orienting response to infrequent stimuli. Rather it results from the conflict induced by bivalent stimuli, probably by episodic binding with the more demanding context created by them.
Resumo:
Encountering a conflict triggers an adjustment of cognitive control. This adjustment of cognitive control can even affect subsequent performance. The purpose of the present study was to determine whether more conflict triggers more adjustment of cognitive control for subsequent performance. To this end, we focussed on the bivalency effect, that is, the adjustment of cognitive control following the conflict induced by bivalent stimuli (i.e., stimuli with relevant features for two tasks). In two experiments, we tested whether the amount of conflict triggered by bivalent stimuli affected the bivalency effect. Bivalent stimuli were either compatible (i.e., affording one response) or incompatible (i.e., affording two different responses). Thus, compatible bivalent stimuli involved a task conflict, whereas incompatible bivalent stimuli involved a task and a response conflict. The results showed that the bivalency effect was not affected by this manipulation. This indicates that more conflict does not trigger more adjustment of cognitive control for subsequent performance. Therefore, only the occurrence of conflict--not its amount--is determinant for cognitive control.
Resumo:
Encountering a conflict triggers an adjustment of cognitive control. This adjustment of cognitive control can even affect subsequent performance. The purpose of the present study was to determine whether more conflict triggers more adjustment of cognitive control for subsequent performance. To this end, we focussed on the bivalency effect, that is, the adjustment of cognitive control following the conflict induced by bivalent stimuli (i.e., stimuli with relevant features for two tasks). In two experiments, we tested whether the amount of conflict triggered by bivalent stimuli affected the bivalency effect. Bivalent stimuli were either compatible (i.e., affording one response) or incompatible (i.e., affording two different responses). Thus, compatible bivalent stimuli involved a task conflict, whereas incompatible bivalent stimuli involved a task and a response conflict. The results showed that the bivalency effect was not affected by this manipulation. This indicates that more conflict does not trigger more adjustment of cognitive control for subsequent performance. Therefore, only the occurrence of conflict – not its amount – is determinant for cognitive control
Resumo:
OBJECTIVE We endeavored to develop an unruptured intracranial aneurysm (UIA) treatment score (UIATS) model that includes and quantifies key factors involved in clinical decision-making in the management of UIAs and to assess agreement for this model among specialists in UIA management and research. METHODS An international multidisciplinary (neurosurgery, neuroradiology, neurology, clinical epidemiology) group of 69 specialists was convened to develop and validate the UIATS model using a Delphi consensus. For internal (39 panel members involved in identification of relevant features) and external validation (30 independent external reviewers), 30 selected UIA cases were used to analyze agreement with UIATS management recommendations based on a 5-point Likert scale (5 indicating strong agreement). Interrater agreement (IRA) was assessed with standardized coefficients of dispersion (vr*) (vr* = 0 indicating excellent agreement and vr* = 1 indicating poor agreement). RESULTS The UIATS accounts for 29 key factors in UIA management. Agreement with UIATS (mean Likert scores) was 4.2 (95% confidence interval [CI] 4.1-4.3) per reviewer for both reviewer cohorts; agreement per case was 4.3 (95% CI 4.1-4.4) for panel members and 4.5 (95% CI 4.3-4.6) for external reviewers (p = 0.017). Mean Likert scores were 4.2 (95% CI 4.1-4.3) for interventional reviewers (n = 56) and 4.1 (95% CI 3.9-4.4) for noninterventional reviewers (n = 12) (p = 0.290). Overall IRA (vr*) for both cohorts was 0.026 (95% CI 0.019-0.033). CONCLUSIONS This novel UIA decision guidance study captures an excellent consensus among highly informed individuals on UIA management, irrespective of their underlying specialty. Clinicians can use the UIATS as a comprehensive mechanism for indicating how a large group of specialists might manage an individual patient with a UIA.
Resumo:
Encountering a cognitive conflict not only slows current performance, but it can also affect subsequent performance, in particular when the conflict is induced with bivalent stimuli (i.e., stimuli with relevant features for two different tasks) or with incongruent trials (i.e., stimuli with relevant features for two response alternatives). The post-conflict slowing following bivalent stimuli, called “bivalency effect”, affects all subsequent stimuli, irrespective of whether the subsequent stimuli share relevant features with the conflict stimuli. To date, it is unknown whether the conflict induced by incongruent stimuli results in a similar post-conflict slowing. To investigate this, we performed six experiments in which participants switched between two tasks. In one task, incongruent stimuli appeared occasionally; in the other task, stimuli shared no feature with the incongruent trials. The results showed an initial performance slowing that affected all tasks after incongruent trials. On further trials, however, the slowing only affected the task sharing features with the conflict stimuli. Therefore, the post-conflict slowing following incongruent stimuli is first general and then becomes conflict-specific across trials. These findings are discussed within current task switching and cognitive control accounts.
Resumo:
En este trabajo se aborda el estudio de las relaciones entre sociedad, familia y aprendizaje. Particularmente refiere a las características del contexto alfabetizador hogareño de poblaciones carenciadas y sus repercusiones en las habilidades y conocimientos prelectores de sus hijos. Para examinar dichas relaciones, se seleccionaron aleatoriamente 62 niños de 4/5 años de edad y sus madres. Las madres fueron entrevistadas con una adaptación de una encuesta sobre contexto familiar alfabetizador (Whitehurst, 1992). Los niños fueron evaluados utilizando pruebas específicas que permitieran estimar la dimensión `alfabetización temprana'. Los resultados encontrados informan sobre una gran variabilidad en las prácticas y características del contexto hogareño de las familias examinadas y sobre conocimientos y habilidades prelectores infantiles muy incipientes. Las relaciones entre las dos dimensiones bajo estudio, si bien alcanzan significación estadística, muestran valores de bajos a moderados, circunstancia cuya interpretación se discute. Por último, la caracterización de los niños y de los hogares de donde provienen, tiene como finalidad última encontrar indicadores específicos que permitan diseñar estrategias de intervención adecuadas, oportunas y sistemáticas para la prevención de dificultades en el aprendizaje del lenguaje escrito en situaciones que pueden ser consideradas de riesgo
Resumo:
This paper explores the relation between society, family, and learning. In particular, it addresses the features of home literacy environments in low income families and their impact on children's pre-literacy skills and knowledge. Sixty-two four/five-year-old children and their mothers were randomly selected for this study. The mothers were interviewed using an adaptation of a family literacy environment survey (Whitehurst, 1992). The children were assessed with specific tests to examine the scope of their 'early literacy'. The results revealed significant variability in the features and practices of home literacy environments as well as in the children's emerging pre-literacy skills and knowledge. The correlation between the two variables shows low to moderate statistical significance. The implications of such findings are discussed. Additionally, the purpose of isolating relevant features of the children and their home environments is to identify specific indicators related to the literacy fostering process. Ultimately, the goal is to design adequate, timely, and systematic intervention strategies aimed at preventing difficulties related to written language learning in children that could be considered at risk.