983 resultados para Regional climate models
Resumo:
Compute grids are used widely in many areas of environmental science, but there has been limited uptake of grid computing by the climate modelling community, partly because the characteristics of many climate models make them difficult to use with popular grid middleware systems. In particular, climate models usually produce large volumes of output data, and running them usually involves complicated workflows implemented as shell scripts. For example, NEMO (Smith et al. 2008) is a state-of-the-art ocean model that is used currently for operational ocean forecasting in France, and will soon be used in the UK for both ocean forecasting and climate modelling. On a typical modern cluster, a particular one year global ocean simulation at 1-degree resolution takes about three hours when running on 40 processors, and produces roughly 20 GB of output as 50000 separate files. 50-year simulations are common, during which the model is resubmitted as a new job after each year. Running NEMO relies on a set of complicated shell scripts and command utilities for data pre-processing and post-processing prior to job resubmission. Grid Remote Execution (G-Rex) is a pure Java grid middleware system that allows scientific applications to be deployed as Web services on remote computer systems, and then launched and controlled as if they are running on the user's own computer. Although G-Rex is general purpose middleware it has two key features that make it particularly suitable for remote execution of climate models: (1) Output from the model is transferred back to the user while the run is in progress to prevent it from accumulating on the remote system and to allow the user to monitor the model; (2) The client component is a command-line program that can easily be incorporated into existing model work-flow scripts. G-Rex has a REST (Fielding, 2000) architectural style, which allows client programs to be very simple and lightweight and allows users to interact with model runs using only a basic HTTP client (such as a Web browser or the curl utility) if they wish. This design also allows for new client interfaces to be developed in other programming languages with relatively little effort. The G-Rex server is a standard Web application that runs inside a servlet container such as Apache Tomcat and is therefore easy to install and maintain by system administrators. G-Rex is employed as the middleware for the NERC1 Cluster Grid, a small grid of HPC2 clusters belonging to collaborating NERC research institutes. Currently the NEMO (Smith et al. 2008) and POLCOMS (Holt et al, 2008) ocean models are installed, and there are plans to install the Hadley Centre’s HadCM3 model for use in the decadal climate prediction project GCEP (Haines et al., 2008). The science projects involving NEMO on the Grid have a particular focus on data assimilation (Smith et al. 2008), a technique that involves constraining model simulations with observations. The POLCOMS model will play an important part in the GCOMS project (Holt et al, 2008), which aims to simulate the world’s coastal oceans. A typical use of G-Rex by a scientist to run a climate model on the NERC Cluster Grid proceeds as follows :(1) The scientist prepares input files on his or her local machine. (2) Using information provided by the Grid’s Ganglia3 monitoring system, the scientist selects an appropriate compute resource. (3) The scientist runs the relevant workflow script on his or her local machine. This is unmodified except that calls to run the model (e.g. with “mpirun”) are simply replaced with calls to "GRexRun" (4) The G-Rex middleware automatically handles the uploading of input files to the remote resource, and the downloading of output files back to the user, including their deletion from the remote system, during the run. (5) The scientist monitors the output files, using familiar analysis and visualization tools on his or her own local machine. G-Rex is well suited to climate modelling because it addresses many of the middleware usability issues that have led to limited uptake of grid computing by climate scientists. It is a lightweight, low-impact and easy-to-install solution that is currently designed for use in relatively small grids such as the NERC Cluster Grid. A current topic of research is the use of G-Rex as an easy-to-use front-end to larger-scale Grid resources such as the UK National Grid service.
Resumo:
Relationships between clear-sky longwave radiation and aspects of the atmospheric hydrological cycle are quantified in models, reanalyses, and observations over the period 1980-2000. The robust sensitivity of clear-sky surface net longwave radiation (SNLc) to column-integrated water vapor (CWV) of 1-1.5 Wm(-2) mm(-1) combined with the positive relationship between CWV and surface temperature (T-s) explains substantial increases in clear-sky longwave radiative cooling of the atmosphere (Q(LWc)) to the surface over the period. Clear-sky outgoing longwave radiation (OLRc) is highly sensitive to changes in aerosol and greenhouse gas concentrations in addition to temperature and humidity. Over tropical ocean regions of mean descent, Q(LWc) increases with T-s at similar to 3.5-5.5 W m(-2) K-1 for reanalyses, estimates derived from satellite data, and models without volcanic forcing included. Increased Q(LWc) with warming across the tropical oceans helps to explain model ensemble mean increases in precipitation of 0.1-0.15 mm day(-1) K-1, which are primarily determined by ascent regions where precipitation increases at the rate expected from the Clausius-Clapeyron equation. The implications for future projections in the atmospheric hydrological cycle are discussed
Resumo:
The interannual variability of the hydrological cycle is diagnosed from the Hadley Centre and Geophysical Fluid Dynamics Laboratory (GFDL) climate models, both of which are forced by observed sea surface temperatures. The models produce a similar sensitivity of clear-sky outgoing longwave radiation to surface temperature of ∼2 W m−2 K−1, indicating a consistent and positive clear-sky radiative feedback. However, differences between changes in the temperature lapse-rate and the height dependence of moisture fluctuations suggest that contrasting mechanisms bring about this result. The GFDL model appears to give a weaker water vapor feedback (i.e., changes in specific humidity). This is counteracted by a smaller upper tropospheric temperature response to surface warming, which implies a compensating positive lapse-rate feedback.
Resumo:
Severe wind storms are one of the major natural hazards in the extratropics and inflict substantial economic damages and even casualties. Insured storm-related losses depend on (i) the frequency, nature and dynamics of storms, (ii) the vulnerability of the values at risk, (iii) the geographical distribution of these values, and (iv) the particular conditions of the risk transfer. It is thus of great importance to assess the impact of climate change on future storm losses. To this end, the current study employs—to our knowledge for the first time—a coupled approach, using output from high-resolution regional climate model scenarios for the European sector to drive an operational insurance loss model. An ensemble of coupled climate-damage scenarios is used to provide an estimate of the inherent uncertainties. Output of two state-of-the-art global climate models (HadAM3, ECHAM5) is used for present (1961–1990) and future climates (2071–2100, SRES A2 scenario). These serve as boundary data for two nested regional climate models with a sophisticated gust parametrizations (CLM, CHRM). For validation and calibration purposes, an additional simulation is undertaken with the CHRM driven by the ERA40 reanalysis. The operational insurance model (Swiss Re) uses a European-wide damage function, an average vulnerability curve for all risk types, and contains the actual value distribution of a complete European market portfolio. The coupling between climate and damage models is based on daily maxima of 10 m gust winds, and the strategy adopted consists of three main steps: (i) development and application of a pragmatic selection criterion to retrieve significant storm events, (ii) generation of a probabilistic event set using a Monte-Carlo approach in the hazard module of the insurance model, and (iii) calibration of the simulated annual expected losses with a historic loss data base. The climate models considered agree regarding an increase in the intensity of extreme storms in a band across central Europe (stretching from southern UK and northern France to Denmark, northern Germany into eastern Europe). This effect increases with event strength, and rare storms show the largest climate change sensitivity, but are also beset with the largest uncertainties. Wind gusts decrease over northern Scandinavia and Southern Europe. Highest intra-ensemble variability is simulated for Ireland, the UK, the Mediterranean, and parts of Eastern Europe. The resulting changes on European-wide losses over the 110-year period are positive for all layers and all model runs considered and amount to 44% (annual expected loss), 23% (10 years loss), 50% (30 years loss), and 104% (100 years loss). There is a disproportionate increase in losses for rare high-impact events. The changes result from increases in both severity and frequency of wind gusts. Considerable geographical variability of the expected losses exists, with Denmark and Germany experiencing the largest loss increases (116% and 114%, respectively). All countries considered except for Ireland (−22%) experience some loss increases. Some ramifications of these results for the socio-economic sector are discussed, and future avenues for research are highlighted. The technique introduced in this study and its application to realistic market portfolios offer exciting prospects for future research on the impact of climate change that is relevant for policy makers, scientists and economists.
Resumo:
Current changes in the tropical hydrological cycle, including water vapour and precipitation, are presented over the period 1979-2008 based on a diverse suite of observational datasets and atmosphere-only climate models. Models capture the observed variability in tropical moisture while reanalyses cannot. Observed variability in precipitation is highly dependent upon the satellite instruments employed and only cursory agreement with model simulations, primarily relating to the interannual variability associated with the El Niño Southern Oscillation. All datasets display a positive relationship between precipitation and surface temperature but with a large spread. The tendency for wet, ascending regions to become wetter at the expense of dry, descending regimes is in general reproduced. Finally, the frequency of extreme precipitation is shown to rise with warming in the observations and for the model ensemble mean but with large spread in the model simulations. The influence of the Earth’s radiative energy balance in relation to changes in the tropical water cycle are discussed
Resumo:
Current global atmospheric models fail to simulate well organised tropical phenomena in which convection interacts with dynamics and physics. A new methodology to identify convectively coupled equatorial waves, developed by NCAS-Climate, has been applied to output from the two latest models of the Met Office/Hadley Centre which have fundamental differences in dynamical formulation. Variability, horizontal and vertical structures, and propagation characteristics of tropical convection and equatorial waves, along with their coupled behaviour in the models are examined and evaluated against a previous comprehensive study of observations. It is shown that, in general, the models perform well for equatorial waves coupled with off-equatorial convection. However they perform poorly for waves coupled with equatorial convection. The vertical structure of the simulated wave is not conducive to energy conversion/growth and does not support the correct physical-dynamical coupling that occurs in the real world. The following figure shows an example of the Kelvin wave coupled with equatorial convection. It shows that the models fail to simulate a key feature of convectively coupled Kelvin wave in observations, namely near surface anomalous equatorial zonal winds together with intensified equatorial convection and westerly winds in phase with the convection. The models are also not able to capture the observed vertical tilt structure and the vertical propagation of the Kelvin wave into the lower stratosphere as well as the secondary peak in the mid-troposphere, particularly in HadAM3. These results can be used to provide a test-bed for experimentation to improve the coupling of physics and dynamics in climate and weather models.
Resumo:
This paper examines changes in the surface area of glaciers in the North and South Chuya Ridges, Altai Mountains in 1952-2004 and their links with regional climatic variations. The glacier surface areas for 2004 were derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. Data from the World Glacier Inventory (WGI)dating to 1952 and aerial photographs from 1952 were used to estimate the changes. 256 glaciers with a combined area of 253±5.1 km2 have been identified in the region in 2004. Estimation of changes in extent of 126 glaciers with the individual areas not less than 0.5 km2 in 1952 revealed a 19.7±5.8% reduction. The observed glacier retreat is primarily driven by an increase in summer temperatures since the 1980s when air temperatures were increasing at a rate of 0.10 - 0.13oC a-1 at the glacier tongue elevation. The regional climate projections for A2 and B2 CO2 emission scenarios developed using PRECIS regional climate model indicate that summer temperatures will increase in the Altai in 2071-2100 by 6-7oC and 3-5oC respectively in comparison with 1961-1990 while annual precipitation will increase by 15% and 5%. The length of the ablation season will extend from June-August to the late April – early October. The projected increases in precipitation will not compensate for the projected warming and glaciers will continue to retreat in the 21st century under both B2 and A2 scenarios.
Resumo:
Composites of wind speeds, equivalent potential temperature, mean sea level pressure, vertical velocity, and relative humidity have been produced for the 100 most intense extratropical cyclones in the Northern Hemisphere winter for the 40-yr ECMWF Re-Analysis (ERA-40) and the high resolution global environment model (HiGEM). Features of conceptual models of cyclone structure—the warm conveyor belt, cold conveyor belt, and dry intrusion—have been identified in the composites from ERA-40 and compared to HiGEM. Such features can be identified in the composite fields despite the smoothing that occurs in the compositing process. The surface features and the three-dimensional structure of the cyclones in HiGEM compare very well with those from ERA-40. The warm conveyor belt is identified in the temperature and wind fields as a mass of warm air undergoing moist isentropic uplift and is very similar in ERA-40 and HiGEM. The rate of ascent is lower in HiGEM, associated with a shallower slope of the moist isentropes in the warm sector. There are also differences in the relative humidity fields in the warm conveyor belt. In ERA-40, the high values of relative humidity are strongly associated with the moist isentropic uplift, whereas in HiGEM these are not so strongly associated. The cold conveyor belt is identified as rearward flowing air that undercuts the warm conveyor belt and produces a low-level jet, and is very similar in HiGEM and ERA-40. The dry intrusion is identified in the 500-hPa vertical velocity and relative humidity. The structure of the dry intrusion compares well between HiGEM and ERA-40 but the descent is weaker in HiGEM because of weaker along-isentrope flow behind the composite cyclone. HiGEM’s ability to represent the key features of extratropical cyclone structure can give confidence in future predictions from this model.
Resumo:
We analyze the publicly released outputs of the simulations performed by climate models (CMs) in preindustrial (PI) and Special Report on Emissions Scenarios A1B (SRESA1B) conditions. In the PI simulations, most CMs feature biases of the order of 1 W m −2 for the net global and the net atmospheric, oceanic, and land energy balances. This does not result from transient effects but depends on the imperfect closure of the energy cycle in the fluid components and on inconsistencies over land. Thus, the planetary emission temperature is underestimated, which may explain the CMs' cold bias. In the PI scenario, CMs agree on the meridional atmospheric enthalpy transport's peak location (around 40°N/S), while discrepancies of ∼20% exist on the intensity. Disagreements on the oceanic transport peaks' location and intensity amount to ∼10° and ∼50%, respectively. In the SRESA1B runs, the atmospheric transport's peak shifts poleward, and its intensity increases up to ∼10% in both hemispheres. In most CMs, the Northern Hemispheric oceanic transport decreases, and the peaks shift equatorward in both hemispheres. The Bjerknes compensation mechanism is active both on climatological and interannual time scales. The total meridional transport peaks around 35° in both hemispheres and scenarios, whereas disagreements on the intensity reach ∼20%. With increased CO 2 concentration, the total transport increases up to ∼10%, thus contributing to polar amplification of global warming. Advances are needed for achieving a self-consistent representation of climate as a nonequilibrium thermodynamical system. This is crucial for improving the CMs' skill in representing past and future climate changes.
Resumo:
Three simple climate models (SCMs) are calibrated using simulations from atmosphere ocean general circulation models (AOGCMs). In addition to using two conventional SCMs, results from a third simpler model developed specifically for this study are obtained. An easy to implement and comprehensive iterative procedure is applied that optimises the SCM emulation of global-mean surface temperature and total ocean heat content, and, if available in the SCM, of surface temperature over land, over the ocean and in both hemispheres, and of the global-mean ocean temperature profile. The method gives best-fit estimates as well as uncertainty intervals for the different SCM parameters. For the calibration, AOGCM simulations with two different types of forcing scenarios are used: pulse forcing simulations performed with 2 AOGCMs and gradually changing forcing simulations from 15 AOGCMs obtained within the framework of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. The method is found to work well. For all possible combinations of SCMs and AOGCMs the emulation of AOGCM results could be improved. The obtained SCM parameters depend both on the AOGCM data and the type of forcing scenario. SCMs with a poor representation of the atmosphere thermal inertia are better able to emulate AOGCM results from gradually changing forcing than from pulse forcing simulations. Correct simultaneous emulation of both atmospheric temperatures and the ocean temperature profile by the SCMs strongly depends on the representation of the temperature gradient between the atmosphere and the mixed layer. Introducing climate sensitivities that are dependent on the forcing mechanism in the SCMs allows the emulation of AOGCM responses to carbon dioxide and solar insolation forcings equally well. Also, some SCM parameters are found to be very insensitive to the fitting, and the reduction of their uncertainty through the fitting procedure is only marginal, while other parameters change considerably. The very simple SCM is found to reproduce the AOGCM results as well as the other two comparably more sophisticated SCMs.
Resumo:
Models often underestimate blocking in the Atlantic and Pacific basins and this can lead to errors in both weather and climate predictions. Horizontal resolution is often cited as the main culprit for blocking errors due to poorly resolved small-scale variability, the upscale effects of which help to maintain blocks. Although these processes are important for blocking, the authors show that much of the blocking error diagnosed using common methods of analysis and current climate models is directly attributable to the climatological bias of the model. This explains a large proportion of diagnosed blocking error in models used in the recent Intergovernmental Panel for Climate Change report. Furthermore, greatly improved statistics are obtained by diagnosing blocking using climate model data corrected to account for mean model biases. To the extent that mean biases may be corrected in low-resolution models, this suggests that such models may be able to generate greatly improved levels of atmospheric blocking.