901 resultados para Recommended Systems, Component Technolog, Customisation, Collaborative Filtering
Resumo:
We propose dual-domain filtering, an image processing paradigm that couples spatial domain with frequency domain filtering. Our dual-domain defined filter removes artifacts like residual noise of other image denoising methods and compression artifacts. Moreover, iterating the filter achieves state-of-the-art image denoising results, but with a much simpler algorithm than competing approaches. The simplicity and versatility of the dual-domain filter makes it an attractive tool for image processing.
Resumo:
The purpose of this research and development project was to develop a method, a design, and a prototype for gathering, managing, and presenting data about occupational injuries.^ State-of-the-art systems analysis and design methodologies were applied to the long standing problem in the field of occupational safety and health of processing workplace injuries data into information for safety and health program management as well as preliminary research about accident etiologies. The top-down planning and bottom-up implementation approach was utilized to design an occupational injury management information system. A description of a managerial control system and a comprehensive system to integrate safety and health program management was provided.^ The project showed that current management information systems (MIS) theory and methods could be applied successfully to the problems of employee injury surveillance and control program performance evaluation. The model developed in the first section was applied at The University of Texas Health Science Center at Houston (UTHSCH).^ The system in current use at the UTHSCH was described and evaluated, and a prototype was developed for the UTHSCH. The prototype incorporated procedures for collecting, storing, and retrieving records of injuries and the procedures necessary to prepare reports, analyses, and graphics for management in the Health Science Center. Examples of reports, analyses, and graphics presenting UTHSCH and computer generated data were included.^ It was concluded that a pilot test of this MIS should be implemented and evaluated at the UTHSCH and other settings. Further research and development efforts for the total safety and health management information systems, control systems, component systems, and variable selection should be pursued. Finally, integration of the safety and health program MIS into the comprehensive or executive MIS was recommended. ^
Resumo:
This doctoral thesis focuses on the modeling of multimedia systems to create personalized recommendation services based on the analysis of users’ audiovisual consumption. Research is focused on the characterization of both users’ audiovisual consumption and content, specifically images and video. This double characterization converges into a hybrid recommendation algorithm, adapted to different application scenarios covering different specificities and constraints. Hybrid recommendation systems use both content and user information as input data, applying the knowledge from the analysis of these data as the initial step to feed the algorithms in order to generate personalized recommendations. Regarding the user information, this doctoral thesis focuses on the analysis of audiovisual consumption to infer implicitly acquired preferences. The inference process is based on a new probabilistic model proposed in the text. This model takes into account qualitative and quantitative consumption factors on the one hand, and external factors such as zapping factor or company factor on the other. As for content information, this research focuses on the modeling of descriptors and aesthetic characteristics, which influence the user and are thus useful for the recommendation system. Similarly, the automatic extraction of these descriptors from the audiovisual piece without excessive computational cost has been considered a priority, in order to ensure applicability to different real scenarios. Finally, a new content-based recommendation algorithm has been created from the previously acquired information, i.e. user preferences and content descriptors. This algorithm has been hybridized with a collaborative filtering algorithm obtained from the current state of the art, so as to compare the efficiency of this hybrid recommender with the individual techniques of recommendation (different hybridization techniques of the state of the art have been studied for suitability). The content-based recommendation focuses on the influence of the aesthetic characteristics on the users. The heterogeneity of the possible users of these kinds of systems calls for the use of different criteria and attributes to create effective recommendations. Therefore, the proposed algorithm is adaptable to different perceptions producing a dynamic representation of preferences to obtain personalized recommendations for each user of the system. The hypotheses of this doctoral thesis have been validated by conducting a set of tests with real users, or by querying a database containing user preferences - available to the scientific community. This thesis is structured based on the different research and validation methodologies of the techniques involved. In the three central chapters the state of the art is studied and the developed algorithms and models are validated via self-designed tests. It should be noted that some of these tests are incremental and confirm the validation of previously discussed techniques. Resumen Esta tesis doctoral se centra en el modelado de sistemas multimedia para la creación de servicios personalizados de recomendación a partir del análisis de la actividad de consumo audiovisual de los usuarios. La investigación se focaliza en la caracterización tanto del consumo audiovisual del usuario como de la naturaleza de los contenidos, concretamente imágenes y vídeos. Esta doble caracterización de usuarios y contenidos confluye en un algoritmo de recomendación híbrido que se adapta a distintos escenarios de aplicación, cada uno de ellos con distintas peculiaridades y restricciones. Todo sistema de recomendación híbrido toma como datos de partida tanto información del usuario como del contenido, y utiliza este conocimiento como entrada para algoritmos que permiten generar recomendaciones personalizadas. Por la parte de la información del usuario, la tesis se centra en el análisis del consumo audiovisual para inferir preferencias que, por lo tanto, se adquieren de manera implícita. Para ello, se ha propuesto un nuevo modelo probabilístico que tiene en cuenta factores de consumo tanto cuantitativos como cualitativos, así como otros factores de contorno, como el factor de zapping o el factor de compañía, que condicionan la incertidumbre de la inferencia. En cuanto a la información del contenido, la investigación se ha centrado en la definición de descriptores de carácter estético y morfológico que resultan influyentes en el usuario y que, por lo tanto, son útiles para la recomendación. Del mismo modo, se ha considerado una prioridad que estos descriptores se puedan extraer automáticamente de un contenido sin exigir grandes requisitos computacionales y, de tal forma que se garantice la posibilidad de aplicación a escenarios reales de diverso tipo. Por último, explotando la información de preferencias del usuario y de descripción de los contenidos ya obtenida, se ha creado un nuevo algoritmo de recomendación basado en contenido. Este algoritmo se cruza con un algoritmo de filtrado colaborativo de referencia en el estado del arte, de tal manera que se compara la eficiencia de este recomendador híbrido (donde se ha investigado la idoneidad de las diferentes técnicas de hibridación del estado del arte) con cada una de las técnicas individuales de recomendación. El algoritmo de recomendación basado en contenido que se ha creado se centra en las posibilidades de la influencia de factores estéticos en los usuarios, teniendo en cuenta que la heterogeneidad del conjunto de usuarios provoca que los criterios y atributos que condicionan las preferencias de cada individuo sean diferentes. Por lo tanto, el algoritmo se adapta a las diferentes percepciones y articula una metodología dinámica de representación de las preferencias que permite obtener recomendaciones personalizadas, únicas para cada usuario del sistema. Todas las hipótesis de la tesis han sido debidamente validadas mediante la realización de pruebas con usuarios reales o con bases de datos de preferencias de usuarios que están a disposición de la comunidad científica. La diferente metodología de investigación y validación de cada una de las técnicas abordadas condiciona la estructura de la tesis, de tal manera que los tres capítulos centrales se estructuran sobre su propio estudio del estado del arte y los algoritmos y modelos desarrollados se validan mediante pruebas autónomas, sin impedir que, en algún caso, las pruebas sean incrementales y ratifiquen la validación de técnicas expuestas anteriormente.
Resumo:
In this paper we introduce the idea of using a reliability measure associated to the predic- tions made by recommender systems based on collaborative filtering. This reliability mea- sure is based on the usual notion that the more reliable a prediction, the less liable to be wrong. Here we will define a general reliability measure suitable for any arbitrary recom- mender system. We will also show a method for obtaining specific reliability measures specially fitting the needs of different specific recommender systems.
Resumo:
One of the advantages of social networks is the possibility to socialize and personalize the content created or shared by the users. In mobile social networks, where the devices have limited capabilities in terms of screen size and computing power, Multimedia Recommender Systems help to present the most relevant content to the users, depending on their tastes, relationships and profile. Previous recommender systems are not able to cope with the uncertainty of automated tagging and are knowledge domain dependant. In addition, the instantiation of a recommender in this domain should cope with problems arising from the collaborative filtering inherent nature (cold start, banana problem, large number of users to run, etc.). The solution presented in this paper addresses the abovementioned problems by proposing a hybrid image recommender system, which combines collaborative filtering (social techniques) with content-based techniques, leaving the user the liberty to give these processes a personal weight. It takes into account aesthetics and the formal characteristics of the images to overcome the problems of current techniques, improving the performance of existing systems to create a mobile social networks recommender with a high degree of adaptation to any kind of user.
Resumo:
Achieving more sustainable land and water use depends on high-quality information and its improved use. In other words, better linkages are needed between science and management. Since many stakeholders with different relationships to the natural resources are inevitably involved, we suggest that collaborative learning environments and improved information management are prerequisites for integrating science and management. Case studies that deal with resource management issues are presented that illustrate the creation of collaborative learning environments through systems analyses with communities, and an integration of scientific and experiential knowledge of components of the system. This new knowledge needs to be captured and made accessible through innovative information management systems designed collaboratively with users, in forms which fit the users' 'mental models' of how their systems work. A model for linking science and resource management more effectively is suggested. This model entails systems thinking in a collaborative learning environment, and processes to help convergence of views and value systems, and make scientists and different kinds of managers aware of their interdependence. Adaptive management provides a mechanism for applying and refining scientists' and managers' knowledge. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
A methodology for formally modeling and analyzing software architecture of mobile agent systems provides a solid basis to develop high quality mobile agent systems, and the methodology is helpful to study other distributed and concurrent systems as well. However, it is a challenge to provide the methodology because of the agent mobility in mobile agent systems.^ The methodology was defined from two essential parts of software architecture: a formalism to define the architectural models and an analysis method to formally verify system properties. The formalism is two-layer Predicate/Transition (PrT) nets extended with dynamic channels, and the analysis method is a hierarchical approach to verify models on different levels. The two-layer modeling formalism smoothly transforms physical models of mobile agent systems into their architectural models. Dynamic channels facilitate the synchronous communication between nets, and they naturally capture the dynamic architecture configuration and agent mobility of mobile agent systems. Component properties are verified based on transformed individual components, system properties are checked in a simplified system model, and interaction properties are analyzed on models composing from involved nets. Based on the formalism and the analysis method, this researcher formally modeled and analyzed a software architecture of mobile agent systems, and designed an architectural model of a medical information processing system based on mobile agents. The model checking tool SPIN was used to verify system properties such as reachability, concurrency and safety of the medical information processing system. ^ From successful modeling and analyzing the software architecture of mobile agent systems, the conclusion is that PrT nets extended with channels are a powerful tool to model mobile agent systems, and the hierarchical analysis method provides a rigorous foundation for the modeling tool. The hierarchical analysis method not only reduces the complexity of the analysis, but also expands the application scope of model checking techniques. The results of formally modeling and analyzing the software architecture of the medical information processing system show that model checking is an effective and an efficient way to verify software architecture. Moreover, this system shows a high level of flexibility, efficiency and low cost of mobile agent technologies. ^
Resumo:
Part 21: Mobility and Logistics
Resumo:
This paper presents a collaborative virtual learning environment, which includes technologies such as 3D virtual representations, learning and content management systems, remote experiments, and collaborative learning spaces, among others. It intends to facilitate the construction, management and sharing of knowledge among teachers and students, in a global perspective. The environment proposes the use of 3D social representations for accessing learning materials in a dynamic and interactive form, which is regarded to be closer to the physical reality experienced by teachers and students in a learning context. A first implementation of the proposed extended immersive learning environment, in the area of solid mechanics, is also described, including the access to theoretical contents and a remote experiment to determine the elastic modulus of a given object.These instructions give you basic guidelines for preparing camera-ready papers for conference proceedings. Use this document as a template if you are using Microsoft Word 6.0 or later. Otherwise, use this document as an instruction set. The electronic file of your paper will be formatted further. Define all symbols used in the abstract. Do not cite references in the abstract.
Resumo:
Nowadays, many P2P applications proliferate in the Internet. The attractiveness of many of these systems relies on the collaborative approach used to exchange large resources without the dependence and associated constraints of centralized approaches where a single server is responsible to handle all the requests from the clients. As consequence, some P2P systems are also interesting and cost-effective approaches to be adopted by content-providers and other Internet players. However, there are several coexistence problems between P2P applications and In- ternet Service Providers (ISPs) due to the unforeseeable behavior of P2P traffic aggregates in ISP infrastructures. In this context, this work proposes a collaborative P2P/ISP system able to underpin the development of novel Traffic Engi- neering (TE) mechanisms contributing for a better coexistence between P2P applications and ISPs. Using the devised system, two TE methods are described being able to estimate and control the impact of P2P traffic aggregates on the ISP network links. One of the TE methods allows that ISP administrators are able to foresee the expected impact that a given P2P swarm will have in the underlying network infrastructure. The other TE method enables the definition of ISP friendly P2P topologies, where specific network links are protected from P2P traffic. As result, the proposed system and associated mechanisms will contribute for improved ISP resource management tasks and to foster the deployment of innovative ISP-friendly systems.
Resumo:
Tämän työn tarkoituksena on käytännöllisen suositusjärjestelmäratkaisun kehittäminen verkkokauppaympäristöön olemassaolevaa teoriatietoa käyttäen. Työn ensimmäisessä osiossa tarkastellaan ensin tapoja lähdetiedon keräämiseksi järjestelmää varten. Tämän jälkeen käydään läpi eri menetelmiä suosituksen toteuttamiseksi. Lisäksi tutustutaan yleisiin ongelmiin eri menetelmien kanssa. Seuraavaksi tutkitaan miten järjestelmän käyttämään suositustietoa voidaan ryhmitellä. Tämänjälkeen arvioidaan esitettyjä menetelmiä yleisesti tunnettujen kriteerien perusteella. Suositusjärjestelmän toteutustyö on kuvattuna työn toisessa osiossa. Toteutettu ohjelmisto on asennettu kahteen erilliseen toimintaympäristöön.
Resumo:
Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.
Resumo:
Ce mémoire est composé de trois articles qui s’unissent sous le thème de la recommandation musicale à grande échelle. Nous présentons d’abord une méthode pour effectuer des recommandations musicales en récoltant des étiquettes (tags) décrivant les items et en utilisant cette aura textuelle pour déterminer leur similarité. En plus d’effectuer des recommandations qui sont transparentes et personnalisables, notre méthode, basée sur le contenu, n’est pas victime des problèmes dont souffrent les systèmes de filtrage collaboratif, comme le problème du démarrage à froid (cold start problem). Nous présentons ensuite un algorithme d’apprentissage automatique qui applique des étiquettes à des chansons à partir d’attributs extraits de leur fichier audio. L’ensemble de données que nous utilisons est construit à partir d’une très grande quantité de données sociales provenant du site Last.fm. Nous présentons finalement un algorithme de génération automatique de liste d’écoute personnalisable qui apprend un espace de similarité musical à partir d’attributs audio extraits de chansons jouées dans des listes d’écoute de stations de radio commerciale. En plus d’utiliser cet espace de similarité, notre système prend aussi en compte un nuage d’étiquettes que l’utilisateur est en mesure de manipuler, ce qui lui permet de décrire de manière abstraite la sorte de musique qu’il désire écouter.
Resumo:
Tendo como motivação o desenvolvimento de uma representação gráfica de redes com grande número de vértices, útil para aplicações de filtro colaborativo, este trabalho propõe a utilização de superfícies de coesão sobre uma base temática multidimensionalmente escalonada. Para isso, utiliza uma combinação de escalonamento multidimensional clássico e análise de procrustes, em algoritmo iterativo que encaminha soluções parciais, depois combinadas numa solução global. Aplicado a um exemplo de transações de empréstimo de livros pela Biblioteca Karl A. Boedecker, o algoritmo proposto produz saídas interpretáveis e coerentes tematicamente, e apresenta um stress menor que a solução por escalonamento clássico.