977 resultados para Receptor Neurons


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synchronized network responses in thalamus depend on phasic inhibition originating in the thalamic reticular nucleus (nRt) and are mediated by the neurotransmitter γ-aminobutyric acid (GABA). A suggested role for intra-nRt connectivity in inhibitory phasing remains controversial. Recently, functional GABA type B (GABAB) receptors were demonstrated on nRt cells, and the slow time course of the GABAB synaptic response seems ideally suited to deinactivate low-threshold calcium channels. This promotes burst firing, a characteristic feature of synchronized responses. Here we investigate GABAB-mediated rebound burst firing in thalamic cells. Whole-cell current-clamp recordings were obtained from nRt cells and somatosensory thalamocortical relay cells in rat brain slices. Synthetic GABAB inhibitory postsynaptic potentials, generated by a hybrid computer–neuron synapse (dynamic clamp), triggered rebound low-threshold calcium spikes in both cell types when peak inhibitory postsynaptic potential hyperpolarization was greater than −92 mV. The threshold inhibitory postsynaptic potential conductance for rebound burst generation was comparable in nRt (7 nS) and thalamocortical (5 nS) cells. However, burst onset in nRt (1 s) was considerably delayed compared with thalamocortical (0.6 s) cells. Thus, GABAB inhibitory postsynaptic potentials can elicit low-threshold calcium spikes in both relay and nRt neurons, but the resultant oscillation frequency would be faster for thalamocortical–nRt networks (3 Hz) than for nRt–nRt networks (1–2 Hz). We conclude, therefore, that fast (>2 Hz) GABAB-dependent thalamic oscillations are maintained primarily by reciprocal connections between excitatory and inhibitory cells. These findings further indicate that when oscillatory neural networks contain both recurrent and reciprocal inhibition, then distinct population frequencies may result when one or the other type of inhibition is favored.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of the 29-amino acid neuropeptide galanin [GAL (1–29)], GAL(1–15), GAL(1–16), and the GAL subtype 2 receptor agonist d-tryptophan2-GAL(1–29) were studied in the dorsal hippocampus in vitro with intracellular recording techniques. GAL(1–15) induced, in the presence of tetrodotoxin, a dose-dependent hyperpolarization in hippocampal CA3 neurons. Most of the GAL(1–15)-sensitive neurons did not respond to GAL(1–29), GAL(1–16), or d-tryptophan2-GAL(1–29). These results indicate the presence of a distinct, yet-to-be cloned GAL(1–15)-selective receptor on CA3 neurons in the dorsal hippocampus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Observations in reconstituted systems and transfected cells indicate that G-protein receptor kinases (GRKs) and β-arrestins mediate desensitization and endocytosis of G-protein–coupled receptors. Little is known about receptor regulation in neurons. Therefore, we examined the effects of the neurotransmitter substance P (SP) on desensitization of the neurokinin-1 receptor (NK1-R) and on the subcellular distribution of NK1-R, Gαq/11, GRK-2 and -3, and β-arrestin-1 and -2 in cultured myenteric neurons. NK1-R was coexpressed with immunoreactive Gαq/11, GRK-2 and -3, and β-arrestin-1 and -2 in a subpopulation of neurons. SP caused 1) rapid NK1-R–mediated increase in [Ca2+]i, which was transient and desensitized to repeated stimulation; 2) internalization of the NK1-R into early endosomes containing SP; and 3) rapid and transient redistribution of β-arrestin-1 and -2 from the cytosol to the plasma membrane, followed by a striking redistribution of β-arrestin-1 and -2 to endosomes containing the NK1-R and SP. In SP-treated neurons Gαq/11 remained at the plasma membrane, and GRK-2 and -3 remained in centrally located and superficial vesicles. Thus, SP induces desensitization and endocytosis of the NK1-R in neurons that may be mediated by GRK-2 and -3 and β-arrestin-1 and -2. This regulation will determine whether NK1-R–expressing neurons participate in functionally important reflexes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Short-term behavioral sensitization of the gill-withdrawal reflex after tail stimuli in Aplysia leads to an enhancement of the connections between sensory and motor neurons of this reflex. Both behavioral sensitization and enhancement of the connection between sensory and motor neurons are importantly mediated by serotonin. Serotonin activates two types of receptors in the sensory neurons, one of which is coupled to the cAMP/protein kinase A (PKA) pathway and the other to the inositol triphosphate/protein kinase C (PKC) pathway. Here we describe a genetic approach to assessing the isolated contribution of the PKA pathway to short-term facilitation. We have cloned from Aplysia an octopamine receptor gene, Ap oa1, that couples selectively to the cAMP/PKA pathway. We have ectopically expressed this receptor in Aplysia sensory neurons of the pleural ganglia, where it is not normally expressed. Activation of this receptor by octopamine stimulates all four presynaptic events involved in short-term synaptic facilitation that are normally produced by serotonin: (i) membrane depolarization; (ii) increased membrane excitability; (iii) increased spike duration; and (iv) presynaptic facilitation. These results indicate that the cAMP/PKA pathway alone is sufficient to produce all the features of presynaptic facilitation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In vivo, G protein-coupled receptors (GPCR) for neurotransmitters undergo complex intracellular trafficking that contribute to regulate their abundance at the cell surface. Here, we report a previously undescribed alteration in the subcellular localization of D1 dopamine receptor (D1R) that occurs in vivo in striatal dopaminoceptive neurons in response to chronic and constitutive hyperdopaminergia. Indeed, in mice lacking the dopamine transporter, D1R is in abnormally low abundance at the plasma membrane of cell bodies and dendrites and is largely accumulated in rough endoplasmic reticulum and Golgi apparatus. Decrease of striatal extracellular dopamine concentration with 6-hydroxydopamine (6- OHDA) in heterozygous mice restores delivery of the receptor from the cytoplasm to the plasma membrane in cell bodies. These results demonstrate that, in vivo, in the central nervous system, the storage in cytoplasmic compartments involved in synthesis and the membrane delivery contribute to regulate GPCR availability and abundance at the surface of the neurons under control of the neurotransmitter tone. Such regulation may contribute to modulate receptivity of neurons to their endogenous ligands and related exogenous drugs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Src-family protein tyrosine kinases (PTKs) transduce signals to regulate neuronal development and synaptic plasticity. However, the nature of their activators and molecular mechanisms underlying these neural processes are unknown. Here, we show that brain-derived neurotrophic factor (BDNF) and platelet-derived growth factor enhance expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor 1 and 2/3 proteins in rodent neocortical neurons via the Src-family PTK(s). The increase in AMPA receptor levels was blocked in cultured neocortical neurons by addition of a Src-family-selective PTK inhibitor. Accordingly, neocortical cultures from Fyn-knockout mice failed to respond to BDNF whereas those from wild-type mice responded. Moreover, the neocortex of young Fyn mutants exhibited a significant in vivo reduction in these AMPA receptor proteins but not in their mRNA levels. In vitro kinase assay revealed that BDNF can indeed activate the Fyn kinase: It enhanced tyrosine phosphorylation of Fyn as well as that of enolase supplemented exogenously. All of these results suggest that the Src-family kinase Fyn, activated by the growth factors, plays a crucial role in modulating AMPA receptor expression during brain development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transient global ischemia induces selective delayed cell death, primarily of principal neurons in the hippocampal CA1. However, the molecular mechanisms underlying ischemia-induced cell death are as yet unclear. The present study shows that global ischemia triggers a pronounced and cell-specific reduction in GluR2 [the subunit that limits Ca2+ permeability of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors] in vulnerable CA1 neurons, as evidenced by immunofluorescence of brain sections and Western blot analysis of microdissected hippocampal subfields. At 72 h after ischemia (a time before cell death), virtually all CA1 pyramidal neurons exhibited greatly reduced GluR2 immunolabeling throughout their somata and dendritic processes. GluR2 immunolabeling was unchanged in pyramidal cells of the CA3 and granule cells of the dentate gyrus, regions resistant to ischemia-induced damage. Immunolabeling of the AMPA receptor subunit GluR1 was unchanged in CA1, CA3, and dentate gyrus. Western analysis indicated that GluR2 subunit abundance was markedly reduced in CA1 at 60 and 72 h after the ischemic insult; GluR1 abundance was unchanged in all subfields at all times examined. These findings, together with the previous observation of enhanced AMPA-elicited Ca2+ influx in postischemic CA1 neurons, show that functional GluR2-lacking, Ca2+-permeable AMPA receptors are expressed in vulnerable neurons before cell death. Thus, the present study provides an important link in the postulated causal chain between global ischemia and delayed death of CA1 pyramidal neurons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have developed a method to analyze the relative contributions of pre- and postsynaptic actions of a particular gene product in neurons in culture and potentially in slices using adenovirus-mediated gene transfer. A recombinant virus directed the expression of both a GFP reporter protein and TrkB.T1, a C-terminal truncated dominant negative TrkB neurotrophin receptor. When expressed in the presynaptic cell at synapses between embryonic hippocampal neurons in culture, the dominant negative TrkB.T1 inhibited two forms of synaptic potentiation induced by the neurotrophin brain-derived neurotrophic factor (BDNF): (i) greater evoked synaptic transmission and (ii) higher frequency of spontaneous miniature synaptic currents. These inhibition effects are not seen if the transgene is expressed only in the postsynaptic cell. We conclude that BDNF-TrkB signal transduction in the presynaptic terminal leads to both types of potentiation and is therefore the primary cause of synaptic enhancement by BDNF in these neurons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although it has been known for some time that estrogen exerts a profound influence on brain development a definitive demonstration of the role of the classical estrogen receptor (ERα) in sexual differentiation has remained elusive. In the present study we used a sexually dimorphic population of dopaminergic neurons in the anteroventral periventricular nucleus of the hypothalamus (AVPV) to test the dependence of sexual differentiation on a functional ERα by comparing the number of tyrosine hydroxylase (TH)-immunoreactive neurons in the AVPV of wild-type (WT) mice with that of mice in which the ERα had been disrupted by homologous recombination (ERKOα). Only a few ERα-immunoreactive neurons were detected in the AVPV of ERKOα mice, and the number of TH-immunoreactive neurons was three times that of WT mice, suggesting that disruption of the ERα gene feminized the number of TH-immunoreactive neurons. In contrast, the AVPV contains the same number of TH-immunoreactive neurons in testicular feminized male mice as in WT males, indicating that sexual differentiation of this population of neurons is not dependent on an intact androgen receptor. The number of TH-immunoreactive neurons in the AVPV of female ERKOα mice remained higher than that of WT males, but TH staining appeared to be lower than that of WT females. Thus, the sexual differentiation of dopamine neurons in the AVPV appears to be receptor specific and dependent on the perinatal steroid environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ATP-gated P2X2 receptors are widely expressed in neurons, but the cellular effects of receptor activation are unclear. We engineered functional green fluorescent protein (GFP)-tagged P2X2 receptors and expressed them in embryonic hippocampal neurons, and report an approach to determining functional and total receptor pool sizes in living cells. ATP application to dendrites caused receptor redistribution and the formation of varicose hot spots of higher P2X2-GFP receptor density. Redistribution in dendrites was accompanied by an activation-dependent enhancement of the ATP-evoked current. Substate-specific mutant T18A P2X2-GFP receptors showed no redistribution or activation-dependent enhancement of the ATP-evoked current. Thus fluorescent P2X2-GFP receptors function normally, can be quantified, and reveal the dynamics of P2X2 receptor distribution on the seconds time scale.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Estrogens (E) and progestins regulate synaptogenesis in the CA1 region of the dorsal hippocampus during the estrous cycle of the female rat, and the functional consequences include changes in neurotransmission and memory. Synapse formation has been demonstrated by using the Golgi technique, dye filling of cells, electron microscopy, and radioimmunocytochemistry. N-methyl-d-aspartate (NMDA) receptor activation is required, and inhibitory interneurons play a pivotal role as they express nuclear estrogen receptor alpha (ERα) and show E-induced decreases of GABAergic activity. Although global decreases in inhibitory tone may be important, a more local role for E in CA1 neurons seems likely. The rat hippocampus expresses both ERα and ERβ mRNA. At the light microscopic level, autoradiography shows cell nuclear [3H]estrogen and [125I]estrogen uptake according to a distribution that primarily reflects the localization of ERα-immunoreactive interneurons in the hippocampus. However, recent ultrastructural studies have revealed extranuclear ERα immunoreactivity (IR) within select dendritic spines on hippocampal principal cells, axon terminals, and glial processes, localizations that would not be detectable by using standard light microscopic methods. Based on recent studies showing that both types of ER are expressed in a form that activates second messenger systems, these findings support a testable model in which local, non-genomic regulation by estrogen participates along with genomic actions of estrogens in the regulation of synapse formation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Opiate alkaloids are potent analgesics that exert multiple pharmacological effects in the nervous system by activating G protein-coupled receptors. Receptor internalization upon stimulation may be important for desensitization and resensitization, which affect cellular responsiveness to ligands. Here, we investigated the agonist-induced internalization of the mu opioid receptor (MOR) in vivo by using the guinea pig ileum as a model system and immunohistochemistry with an affinity-purified antibody to the C terminus of rat MOR. Antibody specificity was confirmed by the positive staining of human embryonic kidney 293 cells transfected with epitope-tagged MOR cDNA, by the lack of staining of cells transfected with the delta or kappa receptor cDNA, and by the abolition of staining when the MOR antibody was preadsorbed with the MOR peptide fragment. Abundant MOR immunoreactivity (MOR-IR) was localized to the cell body, dendrites, and axonal processes of myenteric neurons. Immunostaining was primarily confined to the plasma membrane of cell bodies and processes. Within 15 min of an intraperitoneal injection of the opiate agonist etorphine, intense MOR-IR was present in vesicle-like structures, which were identified as endosomes by confocal microscopy. At 30 min, MOR-IR was throughout the cytoplasm and in perinuclear vesicles. MOR-IR was still internalized at 120 min. Agonist-induced endocytosis was completely inhibited by the opiate antagonist naloxone. Interestingly, morphine, a high-affinity MOR agonist, did not cause detectable internalization, but it partially inhibited the etorphine-induced MOR endocytosis. These results demonstrate the occurrence of agonist-selective MOR endocytosis in neurons naturally expressing this receptor in vivo and suggest the existence of different mechanisms regulating cellular responsiveness to ligands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ca2+ influx controls multiple neuronal functions including neurotransmitter release, protein phosphorylation, gene expression, and synaptic plasticity. Brain L-type Ca2+ channels, which contain either alpha 1C or alpha 1D as their pore-forming subunits, are an important source of calcium entry into neurons. Alpha 1C exists in long and short forms, which are differentially phosphorylated, and C-terminal truncation of alpha 1C increases its activity approximately 4-fold in heterologous expression systems. Although most L-type calcium channels in brain are localized in the cell body and proximal dendrites, alpha 1C subunits in the hippocampus are also present in clusters along the dendrites of neurons. Examination by electron microscopy shows that these clusters of alpha 1C are localized in the postsynaptic membrane of excitatory synapses, which are known to contain glutamate receptors. Activation of N-methyl-D-aspartate (NMDA)-specific glutamate receptors induced the conversion of the long form of alpha 1C into the short form by proteolytic removal of the C terminus. Other classes of Ca2+ channel alpha1 subunits were unaffected. This proteolytic processing reaction required extracellular calcium and was blocked by inhibitors of the calcium-activated protease calpain, indicating that calcium entry through NMDA receptors activated proteolysis of alpha1C by calpain. Purified calpain catalyzed conversion of the long form of immunopurified alpha 1C to the short form in vitro, consistent with the hypothesis that calpain is responsible for processing of alpha 1C in hippocampal neurons. Our results suggest that NMDA receptor-induced processing of the postsynaptic class C L-type Ca2+ channel may persistently increase Ca2+ influx following intense synaptic activity and may influence Ca2+-dependent processes such as protein phosphorylation, synaptic plasticity, and gene expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The reduced progesterone metabolite tetrahydroprogesterone (3 alpha-hydroxy-5 alpha-pregnan-20-one; 3 alpha,5 alpha-THP) is a positive modulator of the gamma-aminobutyric acid type A (GABAA) receptor. Experiments performed in vitro with hypothalamic fragments have previously shown that GABA could modulate the release of gonadotropin-releasing hormone (GnRH). Using GT1-1 immortalized GnRH neurons, we investigated the role of GABAA receptor ligands, including 3 alpha,5 alpha-THP, on the release of GnRH. We first characterized the GABAA receptors expressed by these neurons. [3H]Muscimol, but not [3H]flunitrazepam, bound with high affinity to GT1-1 cell membranes (Kd = 10.9 +/- 0.3 nM; Bmax = 979 +/- 12 fmol/mg of protein), and [3H]muscimol binding was enhanced by 3 alpha,5 alpha-THP. mRNAs encoding the alpha 1 and beta 3 subunits of the GABAA receptor were detected by the reverse transcriptase polymerase chain reaction. In agreement with binding data, the benzodiazepine-binding gamma subunit mRNA was absent. GnRH release studies showed a dose-related stimulating action of muscimol. 3 alpha,5 alpha-THP not only modulated muscimol-induced secretion but also stimulated GnRH release when administered alone. Bicuculline and picrotoxin blocked the effects of 3 alpha,5 alpha-THP and muscimol. Finally, we observed that GT1-1 neurons convert progesterone to 3 alpha,5 alpha-THP. We propose that progesterone may increase the release of GnRH by a membrane mechanism, via its reduced metabolite 3 alpha,5 alpha-THP acting at the GABAA receptor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have cloned an additional member (GC-D) of the membrane receptor guanylyl cyclase [GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2] family that is specifically expressed in a subpopulation of olfactory sensory neurons. The extracellular, putative ligand-binding domain of the olfactory cyclase is similar in primary structure to two guanylyl cyclases expressed in the retina but diverges considerably from other known guanylyl cyclases. The expression of GC-D RNA is restricted to a small, randomly dispersed population of neurons that is within a single topographic zone in the olfactory neuroepithelium and resembles the pattern of the more diverse seven-transmembrane-domain odorant receptors. These observations suggest that GC-D may function directly in odor recognition or in modulating the sensitivity of a subpopulation of sensory neurons to specific odors.