938 resultados para Real-time measurement
Resumo:
Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatiooral intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach.
Resumo:
Surface Plasmon Resonance (SPR) and localized surface plasmon resonance (LSPR) biosensors have brought a revolutionary change to in vitro study of biological and biochemical processes due to its ability to measure extremely small changes in surface refractive index (RI), binding equilibrium and kinetics. Strategies based on LSPR have been employed to enhance the sensitivity for a variety of applications, such as diagnosis of diseases, environmental analysis, food safety, and chemical threat detection. In LSPR spectroscopy, absorption and scattering of light are greatly enhanced at frequencies that excite the LSPR, resulting in a characteristic extinction spectrum that depends on the RI of the surrounding medium. Compositional and conformational change within the surrounding medium near the sensing surface could therefore be detected as shifts in the extinction spectrum. This dissertation specifically focuses on the development and evaluation of highly sensitive LSPR biosensors for in situ study of biomolecular binding process by incorporating nanotechnology. Compared to traditional methods for biomolecular binding studies, LSPR-based biosensors offer real-time, label free detection. First, we modified the gold sensing surface of LSPR-based biosensors using nanomaterials such as gold nanoparticles (AuNPs) and polymer to enhance surface absorption and sensitivity. The performance of this type of biosensors was evaluated on the application of small heavy metal molecule binding affinity study. This biosensor exhibited ∼7 fold sensitivity enhancement and binding kinetics measurement capability comparing to traditional biosensors. Second, a miniaturized cell culture system was integrated into the LSPR-based biosensor system for the purpose of real-time biomarker signaling pathway studies and drug efficacy studies with living cells. To the best of our knowledge, this is the first LSPR-based sensing platform with the capability of living cell studies. We demonstrated the living cell measurement ability by studying the VEGF signaling pathway in living SKOV-3 cells. Results have shown that the VEGF secretion level from SKOV-3 cells is 0.0137 ± 0.0012 pg per cell. Moreover, we have demonstrated bevacizumab drug regulation to the VEGF signaling pathway using this biosensor. This sensing platform could potentially help studying biomolecular binding kinetics which elucidates the underlying mechanisms of biotransportation and drug delivery.
Resumo:
The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems. ^ To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software platform, to emulate the actual scenarios of a real hybrid power system with the highest level of similarities and capabilities to practical utility systems. It includes phasor measurements at hundreds of measurement points on the system. These measurements were obtained from especially developed laboratory based Phasor Measurement Unit (PMU) that is utilized in addition to existing commercially based PMU’s. The developed PMU was used in conjunction with the interconnected system along with the commercial PMU’s. The tested studies included a new technique for detecting the partially islanded micro grids in addition to several real-time techniques for synchronization and parameter identifications of hybrid systems. ^ Moreover, due to numerous integration of renewable energy resources through DC microgrids, this dissertation performs several practical cases for improvement of interoperability of such systems. Moreover, increased number of small and dispersed generating stations and their need to connect fast and properly into the AC grids, urged this work to explore the challenges that arise in synchronization of generators to the grid and through introduction of a Dynamic Brake system to improve the process of connecting distributed generators to the power grid.^ Real time operation and control requires data communication security. A research effort in this dissertation was developed based on Trusted Sensing Base (TSB) process for data communication security. The innovative TSB approach improves the security aspect of the power grid as a cyber-physical system. It is based on available GPS synchronization technology and provides protection against confidentiality attacks in critical power system infrastructures. ^
Resumo:
Il riconoscimento delle gesture è un tema di ricerca che sta acquisendo sempre più popolarità, specialmente negli ultimi anni, grazie ai progressi tecnologici dei dispositivi embedded e dei sensori. Lo scopo di questa tesi è quello di utilizzare alcune tecniche di machine learning per realizzare un sistema in grado di riconoscere e classificare in tempo reale i gesti delle mani, a partire dai segnali mioelettrici (EMG) prodotti dai muscoli. Inoltre, per consentire il riconoscimento di movimenti spaziali complessi, verranno elaborati anche segnali di tipo inerziale, provenienti da una Inertial Measurement Unit (IMU) provvista di accelerometro, giroscopio e magnetometro. La prima parte della tesi, oltre ad offrire una panoramica sui dispositivi wearable e sui sensori, si occuperà di analizzare alcune tecniche per la classificazione di sequenze temporali, evidenziandone vantaggi e svantaggi. In particolare, verranno considerati approcci basati su Dynamic Time Warping (DTW), Hidden Markov Models (HMM), e reti neurali ricorrenti (RNN) di tipo Long Short-Term Memory (LSTM), che rappresentano una delle ultime evoluzioni nel campo del deep learning. La seconda parte, invece, riguarderà il progetto vero e proprio. Verrà impiegato il dispositivo wearable Myo di Thalmic Labs come caso di studio, e saranno applicate nel dettaglio le tecniche basate su DTW e HMM per progettare e realizzare un framework in grado di eseguire il riconoscimento real-time di gesture. Il capitolo finale mostrerà i risultati ottenuti (fornendo anche un confronto tra le tecniche analizzate), sia per la classificazione di gesture isolate che per il riconoscimento in tempo reale.
Resumo:
The cortisol awakening response (CAR) is typically measured in the domestic setting. Moderate sample timing inaccuracy has been shown to result in erroneous CAR estimates and such inaccuracy has been shown partially to explain inconsistency in the CAR literature. The need for more reliable measurement of the CAR has recently been highlighted in expert consensus guidelines where it was pointed out that less than 6% of published studies provided electronic-monitoring of saliva sampling time in the post-awakening period. Analyses of a merged data-set of published studies from our laboratory are presented. To qualify for selection, both time of awakening and collection of the first sample must have been verified by electronic-monitoring and sampling commenced within 15 min of awakening. Participants (n = 128) were young (median age of 20 years) and healthy. Cortisol values were determined in the 45 min post-awakening period on 215 sampling days. On 127 days, delay between verified awakening and collection of the first sample was less than 3 min (‘no delay’ group); on 45 days there was a delay of 4–6 min (‘short delay’ group); on 43 days the delay was 7–15 min (‘moderate delay’ group). Cortisol values for verified sampling times accurately mapped on to the typical post-awakening cortisol growth curve, regardless of whether sampling deviated from desired protocol timings. This provides support for incorporating rather than excluding delayed data (up to 15 min) in CAR analyses. For this population the fitted cortisol growth curve equation predicted a mean cortisol awakening level of 6 nmols/l (±1 for 95% CI) and a mean CAR rise of 6 nmols/l (±2 for 95% CI). We also modelled the relationship between real delay and CAR magnitude, when the CAR is calculated erroneously by incorrectly assuming adherence to protocol time. Findings supported a curvilinear hypothesis in relation to effects of sample delay on the CAR. Short delays of 4–6 min between awakening and commencement of saliva sampling resulted an overestimated CAR. Moderate delays of 7–15 min were associated with an underestimated CAR. Findings emphasize the need to employ electronic-monitoring of sampling accuracy when measuring the CAR in the domestic setting.
Resumo:
In recent years, depth cameras have been widely utilized in camera tracking for augmented and mixed reality. Many of the studies focus on the methods that generate the reference model simultaneously with the tracking and allow operation in unprepared environments. However, methods that rely on predefined CAD models have their advantages. In such methods, the measurement errors are not accumulated to the model, they are tolerant to inaccurate initialization, and the tracking is always performed directly in reference model's coordinate system. In this paper, we present a method for tracking a depth camera with existing CAD models and the Iterative Closest Point (ICP) algorithm. In our approach, we render the CAD model using the latest pose estimate and construct a point cloud from the corresponding depth map. We construct another point cloud from currently captured depth frame, and find the incremental change in the camera pose by aligning the point clouds. We utilize a GPGPU-based implementation of the ICP which efficiently uses all the depth data in the process. The method runs in real-time, it is robust for outliers, and it does not require any preprocessing of the CAD models. We evaluated the approach using the Kinect depth sensor, and compared the results to a 2D edge-based method, to a depth-based SLAM method, and to the ground truth. The results show that the approach is more stable compared to the edge-based method and it suffers less from drift compared to the depth-based SLAM.
Resumo:
Power system engineers face a double challenge: to operate electric power systems within narrow stability and security margins, and to maintain high reliability. There is an acute need to better understand the dynamic nature of power systems in order to be prepared for critical situations as they arise. Innovative measurement tools, such as phasor measurement units, can capture not only the slow variation of the voltages and currents but also the underlying oscillations in a power system. Such dynamic data accessibility provides us a strong motivation and a useful tool to explore dynamic-data driven applications in power systems. To fulfill this goal, this dissertation focuses on the following three areas: Developing accurate dynamic load models and updating variable parameters based on the measurement data, applying advanced nonlinear filtering concepts and technologies to real-time identification of power system models, and addressing computational issues by implementing the balanced truncation method. By obtaining more realistic system models, together with timely updated parameters and stochastic influence consideration, we can have an accurate portrait of the ongoing phenomena in an electrical power system. Hence we can further improve state estimation, stability analysis and real-time operation.
Resumo:
Surface Plasmon Resonance (SPR) and localized surface plasmon resonance (LSPR) biosensors have brought a revolutionary change to in vitro study of biological and biochemical processes due to its ability to measure extremely small changes in surface refractive index (RI), binding equilibrium and kinetics. Strategies based on LSPR have been employed to enhance the sensitivity for a variety of applications, such as diagnosis of diseases, environmental analysis, food safety, and chemical threat detection. In LSPR spectroscopy, absorption and scattering of light are greatly enhanced at frequencies that excite the LSPR, resulting in a characteristic extinction spectrum that depends on the RI of the surrounding medium. Compositional and conformational change within the surrounding medium near the sensing surface could therefore be detected as shifts in the extinction spectrum. This dissertation specifically focuses on the development and evaluation of highly sensitive LSPR biosensors for in situ study of biomolecular binding process by incorporating nanotechnology. Compared to traditional methods for biomolecular binding studies, LSPR-based biosensors offer real-time, label free detection. First, we modified the gold sensing surface of LSPR-based biosensors using nanomaterials such as gold nanoparticles (AuNPs) and polymer to enhance surface absorption and sensitivity. The performance of this type of biosensors was evaluated on the application of small heavy metal molecule binding affinity study. This biosensor exhibited ~7 fold sensitivity enhancement and binding kinetics measurement capability comparing to traditional biosensors. Second, a miniaturized cell culture system was integrated into the LSPR-based biosensor system for the purpose of real-time biomarker signaling pathway studies and drug efficacy studies with living cells. To the best of our knowledge, this is the first LSPR-based sensing platform with the capability of living cell studies. We demonstrated the living cell measurement ability by studying the VEGF signaling pathway in living SKOV-3 cells. Results have shown that the VEGF secretion level from SKOV-3 cells is 0.0137 ± 0.0012 pg per cell. Moreover, we have demonstrated bevacizumab drug regulation to the VEGF signaling pathway using this biosensor. This sensing platform could potentially help studying biomolecular binding kinetics which elucidates the underlying mechanisms of biotransportation and drug delivery.
Resumo:
This thesis studies the state-of-the-art of phasor measurement units (PMUs) as well as their metrological requirements stated in the IEEE C37.118.1 and C37.118.2 Standards for guaranteeing correct measurement performances. Communication systems among PMUs and their possible applicability in the field of power quality (PQ) assessment are also investigated. This preliminary study is followed by an analysis of the working principle of real-time (RT) simulators and the importance of hardware-in-the-loop (HIL) implementation, examining the possible case studies specific for PMUs, including compliance tests which are one of the most important parts. The core of the thesis is focused on the implementation of a PMU model in the IEEE 5-bus network in Simulink and in the validation of the results using OPAL RT-4510 as a real-time simulator. An initial check allows one to get an idea about the goodness of the results in Simulink, comparing the PMU data with respect to the load-flow steady-state information. In this part, accuracy indices are also calculated for both voltage and current synchrophasors. The following part consists in the implementation of the same code in OPAL-RT 4510 simulator, after which an initial analysis is carried out in a qualitative way in order to get a sense of the goodness of the outcomes. Finally, the confirmation of the results is based on an examination of the attained voltage and current synchrophasors and accuracy indices coming from Simulink models and from OPAL system, using a Matlab script. This work also proposes suggestions for an upcoming operation of PMUs in a more complex system as the Digital Twin (DT) in order to improve the performances of the already-existing protection devices of the distribution system operator (DSO) for a future enhancement of power systems reliability.
Resumo:
For obtaining accurate and reliable gene expression results it is essential that quantitative real-time RT-PCR (qRT-PCR) data are normalized with appropriate reference genes. The current exponential increase in postgenomic studies on the honey bee, Apis mellifera, makes the standardization of qRT-PCR results an important task for ongoing community efforts. For this aim we selected four candidate reference genes (actin, ribosomal protein 49, elongation factor 1-alpha, tbp-association factor) and used three software-based approaches (geNorm, BestKeeper and NormFinder) to evaluate the suitability of these genes as endogenous controls. Their expression was examined during honey bee development, in different tissues, and after juvenile hormone exposure. Furthermore, the importance of choosing an appropriate reference gene was investigated for two developmentally regulated target genes. The results led us to consider all four candidate genes as suitable genes for normalization in A. mellifera. However, each condition evaluated in this study revealed a specific set of genes as the most appropriated ones.
Resumo:
Background: Hepatitis C virus (HCV) genotyping is the most significant predictor of the response to antiviral therapy. The aim of this study was to develop and evaluate a novel real-time PCR method for HCV genotyping based on the NS5B region. Methodology/Principal Findings: Two triplex reaction sets were designed, one to detect genotypes 1a, 1b and 3a; and another to detect genotypes 2a, 2b, and 2c. This approach had an overall sensitivity of 97.0%, detecting 295 of the 304 tested samples. All samples genotyped by real-time PCR had the same type that was assigned using LiPA version 1 (Line in Probe Assay). Although LiPA v. 1 was not able to subtype 68 of the 295 samples (23.0%) and rendered different subtype results from those assigned by real-time PCR for 12/295 samples (4.0%), NS5B sequencing and real-time PCR results agreed in all 146 tested cases. Analytical sensitivity of the real-time PCR assay was determined by end-point dilution of the 5000 IU/ml member of the OptiQuant HCV RNA panel. The lower limit of detection was estimated to be 125 IU/ml for genotype 3a, 250 IU/ml for genotypes 1b and 2b, and 500 IU/ml for genotype 1a. Conclusions/Significance: The total time required for performing this assay was two hours, compared to four hours required for LiPA v. 1 after PCR-amplification. Furthermore, the estimated reaction cost was nine times lower than that of available commercial methods in Brazil. Thus, we have developed an efficient, feasible, and affordable method for HCV genotype identification.
Resumo:
Background: Reactivation of chronic Chagas disease, which occurs in approximately 20% of patients coinfected with HIV/Trypanosoma cruzi (T. cruzi), is commonly characterized by severe meningoencephalitis and myocarditis. The use of quantitative molecular tests to monitor Chagas disease reactivation was analyzed. Methodology: Polymerase chain reaction (PCR) of kDNA sequences, competitive (C-) PCR and real-time quantitative (q) PCR were compared with blood cultures and xenodiagnosis in samples from 91 patients (57 patients with chronic Chagas disease and 34 with HIV/T. cruzi coinfection), of whom 5 had reactivation of Chagas disease and 29 did not. Principal Findings: qRT-PCR showed significant differences between groups; the highest parasitemia was observed in patients infected with HIV/T. cruzi with Chagas disease reactivation (median 1428.90 T. cruzi/mL), followed by patients with HIV/T. cruzi infection without reactivation (median 1.57 T. cruzi/mL) and patients with Chagas disease without HIV (median 0.00 T. cruzi/mL). Spearman's correlation coefficient showed that xenodiagnosis was correlated with blood culture, C-PCR and qRT-PCR. A stronger Spearman correlation index was found between C-PCR and qRT-PCR, the number of parasites and the HIV viral load, expressed as the number of CD4(+) cells or the CD4(+)/CD8(+) ratio. Conclusions: qRT-PCR distinguished the groups of HIV/T. cruzi coinfected patients with and without reactivation. Therefore, this new method of qRT-PCR is proposed as a tool for prospective studies to analyze the importance of parasitemia (persistent and/or increased) as a criterion for recommending pre-emptive therapy in patients with chronic Chagas disease with HIV infection or immunosuppression. As seen in this study, an increase in HIV viral load and decreases in the number of CD4(+) cells/mm(3) and the CD4(+)/CD8(+) ratio were identified as cofactors for increased parasitemia that can be used to target the introduction of early, pre-emptive therapy.
Resumo:
Early diagnosis of dengue virus (DENV) infection is important for patient management and control of dengue outbreaks. The objective of this study was to analyze the usefulness of urine and saliva samples for early diagnosis of DENV infection by real time RT-PCR. Two febrile patients, who have been attended at the General Hospital of the School of Medicine of Ribeirao Preto, Sao Paulo University were included in the study. Serum, urine and saliva samples collected from both patients were subjected to real time RT-PCR for DENV detection and quantification. Dengue RNA was detected in serum, urine and saliva samples of both patients. Patient 1 was infected with DENV-2 and patient 2 with DENV-3. Data presented in this study suggest that urine and saliva could be used as alternative samples for early diagnosis of dengue virus infection when blood samples are difficult to obtain, e.g.,in newborns and patients with hemorrhagic syndromes.
Resumo:
Real-time (RT)-PCR increases diagnostic yield for bacterial meningitis and is ideal for incorporation into routine surveillance in a developing country. We validated a multiplex RT-PCR assay for Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae in Brazil. Risk factors for being culture-negative, RT-PCR positive were determined. The sensitivity of RT-PCR in cerebrospinal fluid (CSF) was 100% (95% confidence limits, 96.0%-100%) for N. meningitidis, 97.8% (85.5%-99.9%) for S. pneumoniae, and 66.7% (9.4%-99.2%) for H. influenzae. Specificity ranged from 98.9% to 100%. Addition of RT-PCR to routine microbiologic methods increased the yield for detection of S. pneumoniae, N. meningitidis, and H. influenzae cases by 52%, 85%, and 20%, respectively. The main risk factor for being culture negative and RT-PCR positive was presence of antibiotic in CSF (odds ratio 12.2, 95% CI 5.9-25.0). RT-PCR using CSF was highly sensitive and specific and substantially added to measures of meningitis disease burden when incorporated into routine public health surveillance in Brazil.
Resumo:
We show that measurements of finite duration performed on an open two-state system can protect the initial state from a phase-noisy environment, provided the measured observable does not commute with the perturbing interaction. When the measured observable commutes with the environmental interaction, the finite-duration measurement accelerates the rate of decoherence induced by the phase noise. For the description of the measurement of an observable that is incompatible with the interaction between system and environment, we have found an approximate analytical expression, valid at zero temperature and weak coupling with the measuring device. We have tested the validity of the analytical predictions against an exact numerical approach, based on the superoperator-splitting method, that confirms the protection of the initial state of the system. When the coupling between the system and the measuring apparatus increases beyond the range of validity of the analytical approximation, the initial state is still protected by the finite-time measurement, according with the exact numerical calculations.