967 resultados para Reaction-diffusion equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we consider the Eldar model [3] from embryology in which a bone morphogenic protein, a short gastrulation protein, and their compound react and diffuse. We carry out a perturbation analysis in the limit of small diffusivity of the bone morphogenic protein. This analysis establishes conditions under which some elementary results of [3] are valid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of lines is a standard method for advancing the solution of partial differential equations (PDEs) in time. In one sense, the method applies equally well to space-fractional PDEs as it does to integer-order PDEs. However, there is a significant challenge when solving space-fractional PDEs in this way, owing to the non-local nature of the fractional derivatives. Each equation in the resulting semi-discrete system involves contributions from every spatial node in the domain. This has important consequences for the efficiency of the numerical solver, especially when the system is large. First, the Jacobian matrix of the system is dense, and hence methods that avoid the need to form and factorise this matrix are preferred. Second, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. In this paper, we show how an effective preconditioner is essential for improving the efficiency of the method of lines for solving a quite general two-sided, nonlinear space-fractional diffusion equation. A key contribution is to show, how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis contains a mathematical investigation of the existence of travelling wave solutions to singularly perturbed advection-reaction-diffusion models of biological processes. An enhanced mathematical understanding of these solutions and models is gained via the identification of canards (special solutions of fast/slow dynamical systems) and their role in the existence of the most biologically relevant, shock-like solutions. The analysis focuses on two existing models. A new proof of existence of a whole family of travelling waves is provided for a model describing malignant tumour invasion, while new solutions are identified for a model describing wound healing angiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to develop a meshless approach based on the Point Interpolation Method (PIM) for numerical simulation of a space fractional diffusion equation. Two fully-discrete schemes for the one-dimensional space fractional diffusion equation are obtained by using the PIM and the strong-forms of the space diffusion equation. Numerical examples with different nodal distributions are studied to validate and investigate the accuracy and efficiency of the newly developed meshless approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we derive a new nonlinear two-sided space-fractional diffusion equation with variable coefficients from the fractional Fick’s law. A semi-implicit difference method (SIDM) for this equation is proposed. The stability and convergence of the SIDM are discussed. For the implementation, we develop a fast accurate iterative method for the SIDM by decomposing the dense coefficient matrix into a combination of Toeplitz-like matrices. This fast iterative method significantly reduces the storage requirement of O(n2)O(n2) and computational cost of O(n3)O(n3) down to n and O(nlogn)O(nlogn), where n is the number of grid points. The method retains the same accuracy as the underlying SIDM solved with Gaussian elimination. Finally, some numerical results are shown to verify the accuracy and efficiency of the new method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider a two-sided space-fractional diffusion equation with variable coefficients on a finite domain. Firstly, based on the nodal basis functions, we present a new fractional finite volume method for the two-sided space-fractional diffusion equation and derive the implicit scheme and solve it in matrix form. Secondly, we prove the stability and convergence of the implicit fractional finite volume method and conclude that the method is unconditionally stable and convergent. Finally, some numerical examples are given to show the effectiveness of the new numerical method, and the results are in excellent agreement with theoretical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-dimensional variable-order fractional nonlinear reaction-diffusion model is considered. A second-order spatial accurate semi-implicit alternating direction method for a two-dimensional variable-order fractional nonlinear reaction-diffusion model is proposed. Stability and convergence of the semi-implicit alternating direct method are established. Finally, some numerical examples are given to support our theoretical analysis. These numerical techniques can be used to simulate a two-dimensional variable order fractional FitzHugh-Nagumo model in a rectangular domain. This type of model can be used to describe how electrical currents flow through the heart, controlling its contractions, and are used to ascertain the effects of certain drugs designed to treat arrhythmia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficient computation of matrix function vector products has become an important area of research in recent times, driven in particular by two important applications: the numerical solution of fractional partial differential equations and the integration of large systems of ordinary differential equations. In this work we consider a problem that combines these two applications, in the form of a numerical solution algorithm for fractional reaction diffusion equations that after spatial discretisation, is advanced in time using the exponential Euler method. We focus on the efficient implementation of the algorithm on Graphics Processing Units (GPU), as we wish to make use of the increased computational power available with this hardware. We compute the matrix function vector products using the contour integration method in [N. Hale, N. Higham, and L. Trefethen. Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523, 2008]. Multiple levels of preconditioning are applied to reduce the GPU memory footprint and to further accelerate convergence. We also derive an error bound for the convergence of the contour integral method that allows us to pre-determine the appropriate number of quadrature points. Results are presented that demonstrate the effectiveness of the method for large two-dimensional problems, showing a speedup of more than an order of magnitude compared to a CPU-only implementation.