989 resultados para Rate constants
Resumo:
The focus of this Thesis was the study of the sensor domains of two heme-containing methyl-accepting chemotaxis proteins (MCP) from Geobacter sulfurreducens: GSU0582 and GSU0935. These domains contain one c-type heme, form swapped dimers with a PAS-like fold and are the first examples of a new class of heme sensors. NMR spectroscopy was used to assign the heme and polypeptide signals in both sensors, as a first step to probe conformational changes in the vicinity of the hemes. However, the presence of two conformations in solution impaired the confident assignment of the polypeptide signals. To understand how conformational changes and swapped dimerization mechanism can effectively modulate the function of the two sensor domains and their signal transduction process, the sensor domains folding and stability were studied by circular dichroism and UV-visible spectroscopy. The results showed differences in the thermodynamic stability of the sensors, with GSU0582 displaying higher structural stability. These studies also demonstrated that the heme moiety undergoes conformational changes matching those occurring at the global protein structure and that the content of intrinsically disordered segments within these proteins (25% for GSU0935; 13% for GSU0582) correlates with the stability differences observed. The thermodynamic and kinetic properties of the sensor domains were determined at different pH and ionic strength by visible spectroscopy and stopped-flow techniques. Despite the remarkably similar spectroscopic and structural features of the two sensor domains, the results showed that their properties are quite distinct. Sensor domain GSU0935 displayed more negative reduction potentials and smaller reduction rate constants, which were more affected by pH and ionic strength. The available structures were used to rationalize these differences. Overall, the results described in this Thesis indicate that the two G. sulfurreducens MCP sensor domains are designed to function in different working potential ranges, allowing this bacterium to trigger an adequate cellular response in distinct anoxic subsurface environments.
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica
Resumo:
El objetivo del presente proyecto es estudiar los procesos físicos y químicos del radical OH con compuestos orgánicos volátiles (COVs), con los cuales sea factible la formación de agregados de van der Waals (vdW) responsables de la curvatura en los gráficos de Arrhenius, empleando técnicas modernas, complementarias entre si y novedosas en el país. El problema será abordado desde tres perspectivas complementarias: 1) estudios cinéticos, 2) estudios mecanísticos y de distribución de productos y 3) estudios de la dinámica de los procesos físicos y químicos. La finalidad es alcanzar una mejor comprensión de los mecanismos que intervienen en el comportamiento químico de especies presentes en la atmósfera y obtener datos cinéticos de alta calidad que puedan alimentar modelos computacionales capaces de describir la composición de la atmósfera, presente y futura. Los objetivos son estudiar: 1) mediante fotólisis láser pulsada con detección por fluorescencia inducida por láser (PLP-LIF), en reactores de flujo, la cinética de reacción del radical OH(v”=0) con COVs que presentan gráficos de Arrhenius curvos con energías de activación negativas, tales como alcoholes insaturados, alquenos halogenados, éteres halogenados, ésteres alifáticos; 2) en una cámara de simulación de condiciones atmosféricas de gran volumen (4500 L), la identidad y el rendimiento de productos de las reacciones mencionadas, a fines de evaluar su impacto atmosférico y dilucidar los mecanismos de reacción; 3) mediante haces moleculares y espectroscopía láser, la estructura y reactividad de complejos de vdW entre alcoholes insaturados o aromáticos (cresoles) y el radical OH, como modelo de los aductos propuestos como responsables de la desviación al comportamiento de Arrhenius de las reacciones mencionadas; 4) mediante PLP-LIF y expansiones supersónicas, las constantes específicas estado a estado (ksts) de relajación/reacción del radical OH(v”=1-4) vibracionalmente excitado con los COVs mencionados. Los resultados experimentales obtenidos serán contrastados con cálculos ab-initio de estructura electrónica, los cuales apoyarán las interpretaciones, permitirán proponer estructuras de estados de transición y aductos colisionales, como así también calcular las frecuencias de vibración de los complejos de vdW para su posterior asignación en los espectros LIF y REMPI. Asimismo, los mecanismos de reacción propuestos y los parámetros cinéticos medidos experimentalmente serán comparados con aquellos obtenidos por cálculos teóricos. The aim of this project is to study the physical and chemical processes of OH radicals with volatile organic compounds (VOCs) with which the formation of van der Waals (vdW) clusters, responsible for the observed curvature in the Arrhenius plots, might be feasible. The problem will be addressed as follow : 1) kinetic studies; 2) products distribution and mechanistic studies and 3) dynamical studies of the physical and chemical processes. The purpose is to obtain a better understanding of the mechanisms that govern the chemical behavior of species present in the atmosphere and to obtain high quality kinetic data to be used as input to computational models. We will study: 1) the reaction kinetics of OH (v”=0) radicals with VOCs such as unsaturated alcohols, halogenated alkenes, halogenated ethers, aliphatic esters, which show curved Arrhenius plots and negative activation energies, by PLP-LIF, in flow systems; 2) in a large volume (4500 L) atmospheric simulation chamber, reaction products yields in order to evaluate their atmospheric impact and reaction mechanisms; 3) using molecular beams and laser spectroscopy, the structure and reactivity of the vdW complexes formed between the unsaturated or aromatic alcohols and the OH radicals as a model of the adducts proposed as responsible for the non-Arrhenius behavior; 4) the specific state-to-state relaxation/reaction rate constants (ksts) of the vibrationally excited OH (v”=1-4) radical with the VOCs by PLP-LIF and supersonic expansions. Ab-initio calculations will be carried out to support the interpretation of the experimental results, to obtain the transition state and collisional adducts structures, as well as to calculate the vibrational frequencies of the vdW complexes to assign to the LIF and REMPI spectra. Also, the proposed reaction mechanisms and the experimentally measured kinetic parameters will be compared with those obtained from theoretical calculations.
Resumo:
Els dominis d’activació (ADs) de les procarboxipeptidases de la subfamília A/B sempre han sorprès ja que representen una quarta part del proenzim. S’han realitzat alguns estudis per intentar descobrir-ne alguna possible funció alternativa, però no han estat fructífers. El descobriment de l’elevada velocitat de plegament del domini d’activació de la procarboxipeptidasa A2 humana, (ADA2h), emperò, va portar a proposar la possibilitat de que realitzessin una funció d’assistència al plegament del domini enzimàtic. Posteriorment, l’anàlisi del plegament d’ADA2h a pH baix va revelar la capacitat d’aquest domini per formar fibres amiloides, a més de demostrar que un increment de l’estabilitat proteica podia prevenir la formació d’aquests agregats. La profunda caracterització del plegament d’ADA2h va fer que aquesta proteïna fos un bon model amiloidogènic, de manera que es van proposar un seguit d’experiments que s’han desenvolupat en el present treball per tal de conèixer millor aquest procés. S’han dut a terme estudis cinètics d’agregació per tal de valorar la contribució dels diferents aminoàcids de la seqüència polipeptídica, utilitzant 29 variants puntuals d’ADA2h. Es va eliminar la contribució de l’estabilitat mitjançant la utilització d’urea, i per dicroïsme circular conjuntament amb un aparell de flux detingut, es van obtenir dues velocitats diferents, v1 i v2, que corresponen a la formació d’un intermediari i a la seva reorganització, respectivament. Experiments complementaris utilitzant espectroscòpia d’infraroig (IR) revelaren la reorganització de l’estat natiu (en aquest cas) per a donar la forma agregada. Les cinètiques d’IR van mostrar que ADA2h forma l’estructura _ típica de les fibres amiloides, previ desplegament les seves hèlixs-_. Finalment, s’han realitzat estudis de biocomputació per tal d’esbrinar possibles funcions alternatives dels ADs. Les superposicions estructurals semblen mostrar similaritat dels ADs amb dominis de reconeixement d’RNA (RRM). Aquesta hipòtesi s’ha comprovat experimentalment amb ADA4h, mostrant una dèbil, però existent, unió a RNA.
Resumo:
The mechanism of CD8 cooperation with the TCR in antigen recognition was studied on live T cells. Fluorescence correlation measurements yielded evidence of the presence of two TCR and CD8 subpopulations with different lateral diffusion rate constants. Independently, evidence for two subpopulations was derived from the experimentally observed two distinct association phases of cognate peptide bound to class I MHC (pMHC) tetramers and the T cells. The fast phase rate constant ((1.7 +/- 0.2) x 10(5) M(-1) s(-1)) was independent of examined cell type or MHC-bound peptides' structure. Its value was much faster than that of the association of soluble pMHC and TCR ((7.0 +/- 0.3) x 10(3) M(-1) s(-1)), and close to that of the association of soluble pMHC with CD8 ((1-2) x 10(5) M(-1) s(-1)). The fast binding phase disappeared when CD8-pMHC interaction was blocked by a CD8-specific mAb. The latter rate constant was slowed down approximately 10-fold after cells treatment with methyl-beta-cyclodextrin. These results suggest that the most efficient pMHC-cell association route corresponds to a fast tetramer binding to a colocalized CD8-TCR subpopulation, which apparently resides within membrane rafts: the reaction starts by pMHC association with the CD8. This markedly faster step significantly increases the probability of pMHC-TCR encounters and thereby promotes pMHC association with CD8-proximal TCR. The slow binding phase is assigned to pMHC association with a noncolocalized CD8-TCR subpopulation. Taken together with results of cytotoxicity assays, our data suggest that the colocalized, raft-associated CD8-TCR subpopulation is the one capable of inducing T-cell activation.
Resumo:
We addressed the questions of how cerebral glucose transport and phosphorylation change under acute hypoglycemia and what the underlying mechanisms of adaptation are. METHODS: Quantitative (18)F-FDG PET combined with the acquisition of real-time arterial input function was performed on mice. Hypoglycemia was induced and maintained by insulin infusion. PET data were analyzed with the 2-tissue-compartment model for (18)F-FDG, and the results were evaluated with Michaelis-Menten saturation kinetics. RESULTS: Glucose clearance from plasma to brain (K1,glc) and the phosphorylation rate constant increased with decreasing plasma glucose (Gp), in particular at a Gp of less than 2.5 mmol/L. Estimated cerebral glucose extraction ratios taking into account an increased cerebral blood flow (CBF) at a Gp of less than 2 mmol/L were between 0.14 and 0.79. CBF-normalized K1,glc values were in agreement with saturation kinetics. Phosphorylation rate constants indicated intracellular glucose depletion at a Gp of less than 2-3 mmol/L. When brain regions were compared, glucose transport under hypoglycemia was lowest in the hypothalamus. CONCLUSION: Alterations in glucose transport and phosphorylation, as well as intracellular glucose depletion, under acute hypoglycemia can be modeled by saturation kinetics taking into account an increase in CBF. Distinct transport kinetics in the hypothalamus may be involved in its glucose-sensing function.
Resumo:
BACKGROUND: Acetate metabolism in skeletal muscle is regulated by acetylCoA synthetase (ACS). The main function of ACS is to provide cells with acetylCoA, a key molecule for numerous metabolic pathways including fatty acid and cholesterol synthesis and the Krebs cycle. METHODS: Hyperpolarized [1-(13)C]acetate prepared via dissolution dynamic nuclear polarization was injected intravenously at different concentrations into rats. The (13)C magnetic resonance signals of [1-(13)C]acetate and [1-(13)C]acetylcarnitine were recorded in vivo for 1min. The kinetic rate constants related to the transformation of acetate into acetylcarnitine were deduced from the 3s time resolution measurements using two approaches, either mathematical modeling or relative metabolite ratios. RESULTS: Although separated by two biochemical transformations, a kinetic analysis of the (13)C label flow from [1-(13)C]acetate to [1-(13)C]acetylcarnitine led to a unique determination of the activity of ACS. The in vivo Michaelis constants for ACS were KM=0.35±0.13mM and Vmax=0.199±0.031μmol/g/min. CONCLUSIONS: The conversion rates from hyperpolarized acetate into acetylcarnitine were quantified in vivo and, although separated by two enzymatic reactions, these rates uniquely defined the activity of ACS. The conversion rates associated with ACS were obtained using two analytical approaches, both methods yielding similar results. GENERAL SIGNIFICANCE: This study demonstrates the feasibility of directly measuring ACS activity in vivo and, since the activity of ACS can be affected by various pathological states such as cancer or diabetes, the proposed method could be used to non-invasively probe metabolic signatures of ACS in diseased tissue.
Resumo:
A series of cis-configured epoxides and aziridines containing hydrophobic moieties and amino acid esters,were synthesized as new potential inhibitors of the secreted aspartic protease 2 (SAP2) of Candida albicans. Enzyme assays revealed the N- benzyl-3-phenyl-substituted aziridines 11 and 17 as the most potent inhibitors, with second-order inhibition, rate constants (k(2)) between 56000 and 12-1000 M-1 min(-1). The compounds were shown to be pseudo-irreversible dual-mode, inhibitors: the interm ediate esterified enzyme resulting from nucleophilic ring opening was hydrolyzed and yielded amino alcohols as transition state-mimetic reversible inhibitors. The results of docking studies with the ring-closed aziridine forms of the inhibitors suggest binding modes mainly dominated by hydrophobic interactions with the S1, S1' S2, and S2' subsites of the protease, and docking studies with the processed amino alcohol forms predict additional hydrogen bonds of the new hydroxy group to the active site Asp residues. C. albicans growth assays showed the compounds to decrease SAP2-dependent growth while not affecting SAP2-independent growth.
Resumo:
Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis) in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and (lignin+polyphenol)/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD), the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA), there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1). Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants.
Resumo:
Objectives: Acetate brain metabolism has the particularity to occur specifically in glial cells. Labeling studies, using acetate labeled either with 13C (NMR) or 11C (PET), are governed by the same biochemical reactions and thus follow the same mathematical principles. In this study, the objective was to adapt an NMR acetate brain metabolism model to analyse [1-11C]acetate infusion in rats. Methods: Brain acetate infusion experiments were modeled using a two-compartment model approach used in NMR.1-3 The [1-11C]acetate labeling study was done using a beta scintillator.4 The measured radioactive signal represents the time evolution of the sum of all labeled metabolites in the brain. Using a coincidence counter in parallel, an arterial input curve was measured. The 11C at position C-1 of acetate is metabolized in the first turn of the TCA cycle to the position 5 of glutamate (Figure 1A). Through the neurotransmission process, it is further transported to the position 5 of glutamine and the position 5 of neuronal glutamate. After the second turn of the TCA cycle, tracer from [1-11C]acetate (and also a part from glial [5-11C]glutamate) is transferred to glial [1-11C]glutamate and further to [1-11C]glutamine and neuronal glutamate through the neurotransmission cycle. Brain poster session: oxidative mechanisms S460 Journal of Cerebral Blood Flow & Metabolism (2009) 29, S455-S466 Results: The standard acetate two-pool PET model describes the system by a plasma pool and a tissue pool linked by rate constants. Experimental data are not fully described with only one tissue compartment (Figure 1B). The modified NMR model was fitted successfully to tissue time-activity curves from 6 single animals, by varying the glial mitochondrial fluxes and the neurotransmission flux Vnt. A glial composite rate constant Kgtg=Vgtg/[Ace]plasma was extracted. Considering an average acetate concentration in plasma of 1 mmol/g5 and the negligible additional amount injected, we found an average Vgtg = 0.08±0.02 (n = 6), in agreement with previous NMR measurements.1 The tissue time-activity curve is dominated by glial glutamate and later by glutamine (Figure 1B). Labeling of neuronal pools has a low influence, at least for the 20 mins of beta-probe acquisition. Based on the high diffusivity of CO2 across the blood-brain barrier; 11CO2 is not predominant in the total tissue curve, even if the brain CO2 pool is big compared with other metabolites, due to its strong dilution through unlabeled CO2 from neuronal metabolism and diffusion from plasma. Conclusion: The two-compartment model presented here is also able to fit data of positron emission experiments and to extract specific glial metabolic fluxes. 11C-labeled acetate presents an alternative for faster measurements of glial oxidative metabolism compared to NMR, potentially applicable to human PET imaging. However, to quantify the relative value of the TCA cycle flux compared to the transmitochondrial flux, the chemical sensitivity of NMR is required. PET and NMR are thus complementary.
Resumo:
The paper commented on here R. M. C. de Almeida, S. Gonçalves, I. J. R. Baumvol and F. C. Stedile Phys. Rev. B 61 12992 (2000) claims that the Deal and Grove model of oxidation is unable to describe the kinetics in the thin oxide regime due to two main simplifications: (a) the steady-state assumption and (b) the abrupt Si∕SiO2 interface assumption. Although reasonably good fits are obtained without these simplifications, it will be shown that the values of the kinetic parameters are not reliable and that the solutions given for different partial pressures are erroneous. Finally, it will be shown that the correct solution of their model is unable to predict the oxidation rate enhancement observed in the thin oxide regime and that the predicted width of the interface compatible with the Deal and Grove rate constants is too large
Resumo:
Long-lived states (LLS) are relaxation-favoured eigenstates of J-coupled magnetic nuclei. LLS were measured, along with classical 1H and 15 N relaxation rate constants, in aminoacids of the N-terminal Unique domain of the c-Src kinase (USrc), which is disordered in vitro under physiological conditions. The relaxation rates of LLS are a probe for motions and interactions in biomolecules. LLS of the aliphatic protons of glycines, with lifetimes ca. four times longer than their spin-lattice relaxation times, are reported for the first time in an intrinsically disordered protein domain (IDP). LLS relaxation experiments were integrated with 2D spectroscopy methods, further adapting them for studies on proteins.
Resumo:
Kinetic parameters of T cell receptor (TCR) interactions with its ligand have been proposed to control T cell activation. Analysis of kinetic data obtained has so far produced conflicting insights; here, we offer a consideration of this problem. As a model system, association and dissociation of a soluble TCR (sT1) and its specific ligand, an azidobenzoic acid derivative of the peptide SYIPSAEK-(ABA)I (residues 252-260 from Plasmodium berghei circumsporozoite protein), bound to class I MHC H-2K(d)-encoded molecule (MHCp) were studied by surface plasmon resonance. The association time courses exhibited biphasic patterns. The fast and dominant phase was assigned to ligand association with the major fraction of TCR molecules, whereas the slow component was attributed to the presence of traces of TCR dimers. The association rate constant derived for the fast phase, assuming a reversible, single-step reaction mechanism, was relatively slow and markedly temperature-dependent, decreasing from 7.0 x 10(3) at 25 degrees C to 1.8 x 10(2) M(-1).s(-1) at 4 degrees C. Hence, it is suggested that these observed slow rate constants are the result of unresolved elementary steps of the process. Indeed, our analysis of the kinetic data shows that the time courses of TCR-MHCp interaction fit well to two different, yet closely related mechanisms, where an induced fit or a preequilibrium of two unbound TCR conformers are operational. These mechanisms may provide a rationale for the reported conformational flexibility of the TCR and its unusual ligand recognition properties, which combine high specificity with considerable crossreactivity.
Resumo:
In this article are presented some fundamental elements of the conventional and of the variational transition state theories which are needed to carried out calculations of semi-classical chemical dynamics. Some important bottlenecks in building reliable potential energy surfaces using electronic structure calculations are also discussed. It is put emphasis on the methodology of the variational transition state theory with interpolated corrections (VTST-IC), and its application in the calculations of the rate constants and of the kinetic isotope effect (KIE) of CH4 + Cl « CH3 + HCl reaction.
Resumo:
This paper presents some results that may be used as previous considerations to a hydrogen peroxide electrogeneration process design. A kinetic study of oxygen dissolution in aqueous solution is carried out and rate constants for oxygen dissolution are calculated. Voltammetric experiments on vitreous carbon cathode shown that the low saturation concentration drives the oxygen reduction process to a mass transfer controlled process which exhibits low values of limiting currents. Results have shown that the hydrogen peroxide formation and its decomposition to water are separated by 400 mV on the vitreous carbon surface. Diffusion coefficients for oxygen and hydrogen peroxide are calculated using data taken from Levich and Tafel plots. In a series of bulk electrolysis experiments hydrogen peroxide was electrogenerated at several potential values, and concentration profiles as a function of the electrical charged passed were obtained. Data shown that, since limiting current plateaus are poorly defined onto reticulated vitreous carbon, cathodic efficiency may be a good criterion for choosing the potential value in which hydrogen peroxide electrogeneration should be carried out.