922 resultados para Random walks
Resumo:
Large-scale cortical networks exhibit characteristic topological properties that shape communication between brain regions and global cortical dynamics. Analysis of complex networks allows the description of connectedness, distance, clustering, and centrality that reveal different aspects of how the network's nodes communicate. Here, we focus on a novel analysis of complex walks in a series of mammalian cortical networks that model potential dynamics of information flow between individual brain regions. We introduce two new measures called absorption and driftness. Absorption is the average length of random walks between any two nodes, and takes into account all paths that may diffuse activity throughout the network. Driftness is the ratio between absorption and the corresponding shortest path length. For a given node of the network, we also define four related measurements, namely in-and out-absorption as well as in-and out-driftness, as the averages of the corresponding measures from all nodes to that node, and from that node to all nodes, respectively. We find that the cat thalamo-cortical system incorporates features of two classic network topologies, Erdos-Renyi graphs with respect to in-absorption and in-driftness, and configuration models with respect to out-absorption and out-driftness. Moreover, taken together these four measures separate the network nodes based on broad functional roles (visual, auditory, somatomotor, and frontolimbic).
Resumo:
The dynamical discrete web (DyDW), introduced in the recent work of Howitt and Warren, is a system of coalescing simple symmetric one-dimensional random walks which evolve in an extra continuous dynamical time parameter tau. The evolution is by independent updating of the underlying Bernoulli variables indexed by discrete space-time that define the discrete web at any fixed tau. In this paper, we study the existence of exceptional (random) values of tau where the paths of the web do not behave like usual random walks and the Hausdorff dimension of the set of such exceptional tau. Our results are motivated by those about exceptional times for dynamical percolation in high dimension by Haggstrom, Peres and Steif, and in dimension two by Schramm and Steif. The exceptional behavior of the walks in the DyDW is rather different from the situation for the dynamical random walks of Benjamini, Haggstrom, Peres and Steif. For example, we prove that the walk from the origin S(0)(tau) violates the law of the iterated logarithm (LIL) on a set of tau of Hausdorff dimension one. We also discuss how these and other results should extend to the dynamical Brownian web, the natural scaling limit of the DyDW. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We use a spatially explicit population model to explore the population consequences of different habitat selection mechanisms on landscapes with fractal variation in habitat quality. We consider dispersal strategies ranging from random walks to perfect habitat selectors for two species of arboreal marsupial, the greater glider (Petauroides volans) and the mountain brushtail possum (Trichosurus caninus). In this model increasing habitat selection means individuals obtain higher quality territories, but experience increased mortality during dispersal. The net effect is that population sizes are smaller when individuals actively select habitat. We find positive relationships between habitat quality and population size can occur when individuals do not use information about the entire landscape when habitat quality is spatially autocorrelated. We also find that individual behaviour can mitigate the negative effects of spatial variation on population average survival and fecundity. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
We present some exact results for the effect of disorder on the critical properties of an anisotropic XY spin chain in a transverse held. The continuum limit of the corresponding fermion model is taken and in various cases results in a Dirac equation with a random mass. Exact analytic techniques can then be used to evaluate the density of states and the localization length. In the presence of disorder the ferromagnetic-paramagnetic or Ising transition of the model is in the same universality class as the random transverse field Ising model solved by Fisher using a real-space renormalization-group decimation technique (RSRGDT). If there is only randomness in the anisotropy of the magnetic exchange then the anisotropy transition (from a ferromagnet in the x direction to a ferromagnet in the y direction) is also in this universality class. However, if there is randomness in the isotropic part of the exchange or in the transverse held then in a nonzero transverse field the anisotropy transition is destroyed by the disorder. We show that in the Griffiths' phase near the Ising transition that the ground-state energy has an essential singularity. The results obtained for the dynamical critical exponent, typical correlation length, and for the temperature dependence of the specific heat near the Ising transition agree with the results of the RSRODT and numerical work. [S0163-1829(99)07125-8].
Resumo:
Here we describe the results of some computational explorations in Thompson's group F. We describe experiments to estimate the cogrowth of F with respect to its standard finite generating set, designed to address the subtle and difficult question whether or not Thompson's group is amenable. We also describe experiments to estimate the exponential growth rate of F and the rate of escape of symmetric random walks with respect to the standard generating set.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la Center for European Integration de la Freie Universität Berlin, Alemania, entre 2007 i 2009. El tema central del projecte consisteix en la descripció matemàtica de processos espai-temporals mitjançant la teoria dels Continuous-Time Random Walks. L'aportació més significativa del nostre treball en aquest camp consisteix en considerar per primera vegada la interacció entre diversos processos actuant de manera acoblada, ja que fins ara els models existents es limitaven a l'estudi de processos individuals o independents. Aquesta idea fa possible, per exemple, plantejar un sistema de transport en l'espai i a la vegada un procés de reacció (una reacció química, per exemple), i estudiar estadísticament com cada un pot alterar el comportament de l'altre. Això suposa un salt qualitatiu important en la descripció de processos de reacció-dispersió, ja que els nostres models permeten incorporar patrons de dispersió i comportaments temporals (cicles de vida) força realistes en comparació amb els models convencionals. Per tal de completar aquest treball teòric ha estat necessari també desenvolupar algunes eines numèriques (models de xarxa) per facilitar la implementació dels models. En la vessant pràctica, hem aplicat aquestes idees al cas de la dinàmica entre virus i el sistema immunològic que té lloc quan es produeix una infecció a l'organisme. Diferents estudis experimentals portats a terme els últims anys mostren com la resposta immunològica dels organismes superiors presenta una dinàmica temporal força complexa (per exemple, en el cas de la resposta programada). Per aquest motiu, les nostres tècniques matemàtiques són d'especial utilitat per a l'anàlisi d'aquests sistemes. Finalment, altres possibles aplicacions dels models, com ara l'estudi d'invasions biològiques, també han estat considerades.
Resumo:
La segmentació de persones es molt difícil a causa de la variabilitat de les diferents condicions, com la postura que aquestes adoptin, color del fons, etc. Per realitzar aquesta segmentació existeixen diferents tècniques, que a partir d'una imatge ens retornen un etiquetat indicant els diferents objectes presents a la imatge. El propòsit d'aquest projecte és realitzar una comparativa de les tècniques recents que permeten fer segmentació multietiqueta i que son semiautomàtiques, en termes de segmentació de persones. A partir d'un etiquetatge inicial idèntic per a tots els mètodes utilitzats, s'ha realitzat una anàlisi d'aquests, avaluant els seus resultats sobre unes dades publiques, analitzant 2 punts: el nivell de interacció i l'eficiència.
Resumo:
A generalization of reaction-diffusion models to multigeneration biological species is presented. It is based on more complex random walks than those in previous approaches. The new model is developed analytically up to infinite order. Our predictions for the speed agree to experimental data for several butterfly species better than existing models. The predicted dependence for the speed on the number of generations per year allows us to explain the change in speed observed for a specific invasion
Resumo:
Bimodal dispersal probability distributions with characteristic distances differing by several orders of magnitude have been derived and favorably compared to observations by Nathan [Nature (London) 418, 409 (2002)]. For such bimodal kernels, we show that two-dimensional molecular dynamics computer simulations are unable to yield accurate front speeds. Analytically, the usual continuous-space random walks (CSRWs) are applied to two dimensions. We also introduce discrete-space random walks and use them to check the CSRW results (because of the inefficiency of the numerical simulations). The physical results reported are shown to predict front speeds high enough to possibly explain Reid's paradox of rapid tree migration. We also show that, for a time-ordered evolution equation, fronts are always slower in two dimensions than in one dimension and that this difference is important both for unimodal and for bimodal kernels
Resumo:
L'étude du mouvement des organismes est essentiel pour la compréhension du fonctionnement des écosystèmes. Dans le cas des écosystèmes marins exploités, cela amène à s'intéresser aux stratégies spatiales des pêcheurs. L'une des approches les plus utilisées pour la modélisation du mouvement des prédateurs supé- rieurs est la marche aléatoire de Lévy. Une marche aléatoire est un modèle mathématique composé par des déplacements aléatoires. Dans le cas de Lévy, les longueurs des déplacements suivent une loi stable de Lévy. Dans ce cas également, les longueurs, lorsqu'elles tendent vers l'in ni (in praxy lorsqu'elles sont grandes, grandes par rapport à la médiane ou au troisième quartile par exemple), suivent une loi puissance caractéristique du type de marche aléatoire de Lévy (Cauchy, Brownien ou strictement Lévy). Dans la pratique, outre que cette propriété est utilisée de façon réciproque sans fondement théorique, les queues de distribution, notion par ailleurs imprécise, sont modélisée par des lois puissances sans que soient discutées la sensibilité des résultats à la dé nition de la queue de distribution, et la pertinence des tests d'ajustement et des critères de choix de modèle. Dans ce travail portant sur les déplacements observés de trois bateaux de pêche à l'anchois du Pérou, plusieurs modèles de queues de distribution (log-normal, exponentiel, exponentiel tronqué, puissance et puissance tronqué) ont été comparés ainsi que deux dé nitions possible de queues de distribution (de la médiane à l'in ni ou du troisième quartile à l'in ni). Au plan des critères et tests statistiques utilisés, les lois tronquées (exponentielle et puissance) sont apparues les meilleures. Elles intègrent en outre le fait que, dans la pratique, les bateaux ne dépassent pas une certaine limite de longueur de déplacement. Le choix de modèle est apparu sensible au choix du début de la queue de distribution : pour un même bateau, le choix d'un modèle tronqué ou l'autre dépend de l'intervalle des valeurs de la variable sur lequel le modèle est ajusté. Pour nir, nous discutons les implications en écologie des résultats de ce travail.
Resumo:
We apply the theory of continuous time random walks (CTRWs) to study some aspects involving extreme events in financial time series. We focus our attention on the mean exit time (MET). We derive a general equation for this average and compare it with empirical results coming from high-frequency data of the U.S. dollar and Deutsche mark futures market. The empirical MET follows a quadratic law in the return length interval which is consistent with the CTRW formalism.
Resumo:
We consider an irreversible autocatalytic conversion reaction A+B->2A under subdiffusion described by continuous-time random walks. The reactants transformations take place independently of their motion and are described by constant rates. The analog of this reaction in the case of normal diffusion is described by the Fisher-Kolmogorov-Petrovskii-Piskunov equation leading to the existence of a nonzero minimal front propagation velocity, which is really attained by the front in its stable motion. We show that for subdiffusion, this minimal propagation velocity is zero, which suggests propagation failure.
Resumo:
We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined
Resumo:
La segmentació de persones es molt difícil a causa de la variabilitat de les diferents condicions, com la postura que aquestes adoptin, color del fons, etc. Per realitzar aquesta segmentació existeixen diferents tècniques, que a partir d'una imatge ens retornen un etiquetat indicant els diferents objectes presents a la imatge. El propòsit d'aquest projecte és realitzar una comparativa de les tècniques recents que permeten fer segmentació multietiqueta i que son semiautomàtiques, en termes de segmentació de persones. A partir d'un etiquetatge inicial idèntic per a tots els mètodes utilitzats, s'ha realitzat una anàlisi d'aquests, avaluant els seus resultats sobre unes dades publiques, analitzant 2 punts: el nivell de interacció i l'eficiència.
Resumo:
We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined