994 resultados para Ramachandra shukla
Resumo:
The standard Gibbs energy change accompanying the conversion of rare earth oxides to oxysulfides by reaction of rare earth oxides with diatomic sulfur gas has been measured in the temperature range 870 to 1300 K using the solid state cell: Pt/Cu+Cu2S/R2O2S+R2O3‖(CaO)ZrO2‖Ni+NiO, Pt where R=La, Nd, Sm, Gd, Tb, and Dy. The partial pressure of diatomic sulfur over a mixture of rare earth oxide (R2O3) and oxysulfide (R2O2S) is fixed by the dissociation of Cu2S to Cu in a closed system. The buffer mixture of Cu+Cu2S is physically separated from the rare earth oxide and oxysulfide to avoid complications arising from interaction between them. The corresponding equilibrium oxygen partial pressure is measured with an oxide solid electrolyte cell. Gibbs energy change for the conversion of oxide to the corresponding oxysulfide increases monotonically with atomic number of the rare earth element. Second law enthalpy of formation also shows a similar trend. Based on this empirical trend Gibbs energies of formation of oxysulfides of Pr, Eu, Ho, and Er are estimated as a function of temperature.
Resumo:
A numerical analysis of the gas dynamic structure of a two-dimensional laminar boundary layer diffusion flame over a porous flat plate in a confined flow is made on the basis of the familiar boundary layer and flame sheet approximations neglecting buoyancy effects. The governing equations of aerothermochemistry with the appropriate boundary conditions are solved using the Patankar-Spalding method. The analysis predicts the flame shape, profiles of temperature, concentrations of variousspecies, and the density of the mixture across the boundary layer. In addition, it also predicts the pressure gradient in the flow direction arising from the confinement ofthe flow and the consequent velocity overshoot near the flame surface. The results of thecomputation performed for an n-pentane-air system are compared with experimental data andthe agreement is found to be satisfactory.
Resumo:
n recent years, fuel cell technology has advanced significantly. Field trials on certain types of fuel cells have shown promise for electrical use. This article reviews the electrochemistry, problems and prospects of fuel cell systems.
Resumo:
The oxidative degradation of poly(acrylic acid) (PAA), a water soluble polymer, was studied at various temperatures with different concentrations of persulfates, potassium persulfate (KPS), ammonium persulfate (APS) and sodium persulfate (SPS). The photodegradation of PAA was also examined with APS as oxidizer. The degraded samples were analyzed for the time evolution of molecular weight distribution by gel permeation chromatography. A theoretical model based on the continuous distribution kinetics was developed that accounted for the polymer degradation and the dissociation of persulfate. The rate coefficients for the oxidative and photooxidative degradation of PAA were determined from the parametric fit of the model with experimental data. The rate of degradation increased with increasing amount of persulfate in both oxidative and photooxidative degradation. The rate of degradation also increased with increasing temperature in the case of oxidative degradation.
Resumo:
Previous work on rigid splitter plates in the wake of a bluff body has shown that the primary vortex shedding can be suppressed for sufficiently long splitter plates. In the present work, we study the problem of a hinged-splitter plate in the wake of a circular cylinder. The splitter plate can rotate about the hinge at the base of the cylinder due to the unsteady fluid forces acting on it, and hence the communication between the two sides of the wake is not totally disrupted as in the rigid splitter plate case. In our study, we investigate this problem in the limit where the stiffness and internal damping associated with the hinge are negligible, and the mass ratio of the splitter plate is small. The experiments show that the splitter plate oscillations increase with Reynolds numbers at low values of Re, and are found to reach a saturation amplitude level at higher Re, Re>4000. This type of saturation amplitude level that appears to continue indefinitely with Re, appears to be related to the fact that there is no structural restoring force, and has been observed previously for transversely oscillating cylinders with no restorin force. In the present case, the saturation tip amplitude level can be tip to 0.45D, where D is the cylinder diameter. For this hinged-rigid splitter plate case, it is found that the splitter plate length to cylinder diameter ratio (L/D) is crucial in determining the character and magnitude of the oscillations. For small splitter plate length (L/D <= 3.0), the oscillations appear to be nearly periodic with tip amplitudes of about 0.45D nearly independent of L/D. The nondiinensional oscillation frequencies (fD/U) on the other hand are found to continuously vary with L/D from fD/U approximate to 0.2 at L/D = 1 to fD/U approximate to 0.1 at L/D = 3. As the splitter plate length is further increased beyond L/D >= 4.0, the character of the splitter plate oscillations suddenly changes. The oscillations become aperiodic with much smaller amplitudes. In this long splitter plate regime, the spectra of the oscillations become broadband, and are reminiscent of the change in character of the wake oscillations seen in the earlier fixed-rigid splitter plate case for L/D >= 5.0. In the present case of the hinged-splitter plate, the sudden transition seen as the splitter plate length (L/D) is increased from 3 to 4 may be attributed to the fact that the wake vortices are no longer able to synchronize with the plate motions for larger splitter plate lengths. Hence, as observed in other vortex-induced vibration problems, the oscillations becomeaperiodic and the amplitude reduces dramatically.
Resumo:
Oscillatory flow in a tube of slowly varying cross section is investigated in the presence of a uniform magnetic field in the axial direction. A perturbation solution including steady streaming is presented. The pressure and shear stress on the wall for various parameters governing the flow are discussed. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
Porous carbon oxygen-reducing electrodes incorporated with perovskite oxide catalysts are reported. It has been possible to fabricate high-performance oxygen-reducing electrodes by introducing La0.5Sr0.5CoO3 and La0.99Sr0.01NiO3 with the activated coconut-shell charcoal; these electrodes could sustain load currents as high as 1 A cm−2 without serious degradation. A model to explain oxygen-reducing activity of these oxides has been proposed.
Resumo:
Composite membranes with mordenite (MOR) incorporated in poly vinyl alcohol (PVA)–polystyrene sulfonic acid (PSSA) blend tailored with varying degree of sulfonation are reported. Such a membrane comprises a dispersed phase of mordenite and a continuous phase of the polymer that help tuning the flow of methanol and water across it. The membranes on prolonged testing in a direct methanol fuel cell (DMFC) exhibit mitigated methanol cross-over from anode to the cathode. The membranes have been tested for their sorption behaviour, ion-exchange capacity, electrochemical selectivity and mechanical strength as also characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. Water release kinetics has been measured by magnetic resonance imaging (NMR imaging) and is found to be in agreement with the sorption data. Similarly, methanol release kinetics studied by volume-localized NMR spectroscopy (point resolved spectroscopy, PRESS) clearly demonstrates that the dispersion of mordenite in PVA–PSSA retards the methanol release kinetics considerably. A peak power-density of 74 mW/cm2 is achieved for the DMFC using a PVA–PSSA membrane electrolyte with 50% degree of sulfonation and 10 wt.% dispersed mordenite phase. A methanol cross-over current as low as 7.5 mA/cm2 with 2 M methanol feed at the DMFC anode is observed while using the optimized composite membrane as electrolyte in the DMFC, which is about 60% and 46% lower than Nafion-117 and PVA–PSSA membranes, respectively, when tested under identical conditions.
Resumo:
The design, implementation and evaluation are described of a dual-microcomputer system based on the concept of shared memory. Shared memory is useful for passing large blocks of data and it also provides a means to hold and work with shared data. In addition to the shared memory, a separate bus between the I/O ports of the microcomputers is provided. This bus is utilized for interprocessor synchronization. Software routines helpful in applying the dual-microcomputer system to realistic problems are presented. Performance evaluation of the system is carried out using benchmarks.
Resumo:
The limits of stability and extinction of a laminar diffusion flame have been experimentally studied in a two-dimensional laminar boundary layer over a porous flat plate through which n-pentane vapour was uniformly injected. The stability and extinction boundaries are mapped on a plot of free stream oxidant velocity versus fuel injection velocity. Effects of free stream temperature and of dilution of fuel and oxidant on these boundaries have been examined. The results show that there exists a limiting oxidant flux beyond which the diffusion flame cannot be sustained. This limiting oxidant flux has been found to depend_on the free stream oxygen concentration, fuel concentration and injection'velocity of the fuel.
Resumo:
Photochemical transformations of organic solids provide an exciting area of research with new synthetic possibilities. These reactions are generally governed by topochemical factors rather than the normal rules of chemical reactivity. Defects play a crucial role in some of the reactions. Some of the transformations such as the photodimerization of 4, 4'-dimethoxystilbene occur in a single crystal fashion.
Resumo:
The pulsatile flow of an incompressible viscous fluid in a cylindrical tube of varying cross section is investigated for small Reynolds numbers. The solutions consist of a stedy and an oscillatory part. The shear stress distribution on the wall is evaluated and discussed in detail for special geometries like tapered tubes, locally constricted tubes and peristaltic tubes. The existence of separation in the flow field is noticed.
Resumo:
Abstract is not available.