891 resultados para Railroad tracks Maintenance and repair
Resumo:
Includes index.
Resumo:
"October 1985."
Resumo:
"24 August 1982."
Resumo:
"10 September 1985."
Resumo:
Mode of access: Internet.
Resumo:
This case study examines the factors that shaped the identity and landscape of a small island-urban-village between the north and south forks of the Middle River and north of an urban area in Broward County, Florida. The purpose of the study is to understand how Wilton Manors was transformed from a “whites only” enclave to the contemporary upscale, diverse, and third gayest city in the U.S. by positing that a dichotomy for urban places exists between their exchange value as seen by Logan and Molotch and the use value produced through everyday activity according to Lefebvre. Qualitative methods were used to gather evidence for reaching conclusions about the relationship among the worldview of residents, the tension between exchange value and use value in the restructuration of the city, and the transformation of Wilton Manors at the end of the 1990s. Semi-structured, in-depth interviews were conducted with 21 contemporary participants. In addition, thirteen taped CDs of selected members of founding families, previously taped in the 1970s, were analyzed using a grounded theory approach. My findings indicate that Wilton Manors’ residents share a common worldview which incorporates social inclusion as a use value, and individual agency in the community. This shared worldview can be traced to selected city pioneers whose civic mindedness helped shape city identity and laid the foundation for future restructuration. Currently, residents’ quality of life reflected in the city’s use value is more significant than exchange value as a primary force in the decisions that are made about the city’s development. With innovative ideas, buildings emulating the new urban mixed-use design, and a reputation as the third gayest city in the United States, Wilton Manors reflects a worldview where residents protect use value as primary over market value in the decisions they make that shape their city but not without contestation.^
Resumo:
Aberrant DNA replication is a primary cause of mutations that are associated with pathological disorders including cancer. During DNA metabolism, the primary causes of replication fork stalling include secondary DNA structures, highly transcribed regions and damaged DNA. The restart of stalled replication forks is critical for the timely progression of the cell cycle and ultimately for the maintenance of genomic stability. Our previous work has implicated the single-stranded DNA binding protein, hSSB1/NABP2, in the repair of DNA double-strand breaks via homologous recombination. Here, we demonstrate that hSSB1 relocates to hydroxyurea (HU)-damaged replication forks where it is required for ATR and Chk1 activation and recruitment of Mre11 and Rad51. Consequently, hSSB1-depleted cells fail to repair and restart stalled replication forks. hSSB1 deficiency causes accumulation of DNA strand breaks and results in chromosome aberrations observed in mitosis, ultimately resulting in hSSB1 being required for survival to HU and camptothecin. Overall, our findings demonstrate the importance of hSSB1 in maintaining and repairing DNA replication forks and for overall genomic stability.
Resumo:
Saccharomyces cerevisiae RAD50, MRE11, and XRS2 genes are essential for telomere length maintenance, cell cycle checkpoint signaling, meiotic recombination, and DNA double-stranded break (DSB) repair via nonhomologous end joining and homologous recombination. The DSB repair pathways that draw upon Mre11-Rad50-Xrs2 subunits are complex, so their mechanistic features remain poorly understood. Moreover, the molecular basis of DSB end resection in yeast mre11-nuclease deficient mutants and Mre11 nuclease-independent activation of ATM in mammals remains unknown and adds a new dimension to many unanswered questions about the mechanism of DSB repair. Here, we demonstrate that S. cerevisiae Mre11 (ScMre11) exhibits higher binding affinity for single-over double-stranded DNA and intermediates of recombination and repair and catalyzes robust unwinding of substrates possessing a 3' single-stranded DNA overhang but not of 5' overhangs or blunt-ended DNA fragments. Additional evidence disclosed that ScMre11 nuclease activity is dispensable for its DNA binding and unwinding activity, thus uncovering the molecular basis underlying DSB end processing in mre11 nuclease deficient mutants. Significantly, Rad50, Xrs2, and Sae2 potentiate the DNA unwinding activity of Mre11, thus underscoring functional interaction among the components of DSB end repair machinery. Our results also show that ScMre11 by itself binds to DSB ends, then promotes end bridging of duplex DNA, and directly interacts with Sae2. We discuss the implications of these results in the context of an alternative mechanism for DSB end processing and the generation of single-stranded DNA for DNA repair and homologous recombination.
Resumo:
Mode of access: Internet.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Kept up-to-date by periodic replacement or new pages. The latest supplements have title: Manual for railway engineering (fixed properties)
Resumo:
"20 October 1970."
Resumo:
Includes index.