988 resultados para Radiometric corrections


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the Randall-Sundrum brane-world model with bulk-brane energy transfer where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. It is remarkable that these curvature terms will not change the dynamics of the brane universe at low energy. Parameterizing the energy transfer and taking the dark radiation term into account, we find that the phantom divide of the equation of state of effective dark energy could be crossed, without the need of any new dark energy components. Fitting the two most reliable and robust SNIa datasets, the 182 Gold dataset and the Supernova Legacy Survey (SNLS), our model indeed has a small tendency of phantom divide crossing for the Gold dataset, but not for the SNLS dataset. Furthermore, combining the recent detection of the SDSS baryon acoustic oscillations peak (BAO) with lower matter density parameter prior, we find that the SNLS dataset also mildly favors phantom divide crossing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first-order perturbations of the energy levels of a hydrogen atom in central internal gravitational field are investigated. The internal gravitational field is produced by the mass of the atomic nucleus. The energy shifts are calculated for the relativistic 1S, 2S, 2P, 3S, 3P, 3D, 4S, and 4P levels with Schwarzschild metric. The calculated results show that the gravitational corrections are sensitive to the total angular momentum quantum number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peron, N., Cox, S.J., Hutzler, S. and Weaire, D. (2007) Steady drainage in emulsions: corrections for surface Plateau borders and a model for high aqueous volume fraction. The European Physical Journal E - Soft Matter. 22: 341-351. Sponsorship: This research was supported by the European Space Agency (14914/02/NL/SH, 14308/00/NL/SG) (AO-99-031) CCN 002 MAP Project AO-99-075) and Science Foundation Ireland (RFP 05/RFP/PHY0016). SJC acknowledges support from EPSRC (EP/D071127/1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equilibrium structure of acetylene (also named ethyne) has been reinvestigated to resolve the small discrepancies noted between different determinations. The size of the system as well as the large amount of available experimental data provides the quite unique opportunity to check the magnitude and relevance of various contributions to equilibrium structure as well as to verify the accuracy of experimental results. With respect to pure theoretical investigation, quantum-chemical calculations at the coupled-cluster level have been employed together with extrapolation to the basis set limit, consideration of higher excitations in the cluster operator, inclusion of core correlation effects as well as relativistic and diagonal Born-Oppenheimer corrections. In particular, it is found that the extrapolation to the complete basis set limit, the inclusion of higher excitations in the electronic-correlation treatment and the relativistic corrections are of the same order of magnitude. It also appears that a basis set as large as a core-valence quintuple-zeta set is required for accurately accounting for the inner-shell correlation contribution. From a pure experimental point of view, the equilibrium structure has been determined using very accurate rotational constants recently obtained by a global analysis (that is to say that all non-negligible interactions are explicitely included in the Hamiltonian matrix) of rovibrational spectra. Finally, a semi-experimental equilibrium structure (where the equilibrium rotational constants are obtained from the experimental ground state rotational constants and computed rovibrational corrections) has been obtained from the available experimental ground-state rotational constants for ten isotopic species corrected for computed vibrational corrections. Such a determination led to the revision of the ground-state rotational constants of two isotopologues, thus showing that structural determination is a good method to identify errors in experimental rotational constants. The three structures are found in a very good agreement, and our recommended values are rCC 120.2958(7) pm and rCH 106.164(1) pm. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the first marine reservoir age and Delta R determination for the island of St. Helena using marine mollusk radiocarbon dates obtained from an historical context of known age. This represents the first marine reservoir a.-c and Delta R determination in the southern Atlantic Ocean within thousands of kilometers of the island. The depletion of C-14 in the shells indicates a rather larger reservoir age for that portion of the surface Atlantic than models indicate. The implication is that upwelling old water along the Namibian coast is transported for a considerable distance, although it is likely to be variable on a decadal timescale. An artilleryman's button, together with other artifacts found in a midden, demonstrate association of the mollusk shells with a narrow historic period of AD 1815-1835.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scholars of restorative justice have long debated its theoretical relationship with formal criminal justice. This analysis critically examines the range of sociostructural conditions in contemporary society that have halted the spread of restorative policies in practice and prevented them from realizing their transformative potential as an alternative system of justice. These factors are attributed largely to a punitive penal culture that is characterized by policy-making based on penal populism, the governance of risk and a managerialist criminal justice agenda; and the widespread co-optation of restorative programs by the state. This broad argument is explored in the context of two particular case studies – recent developments in youth justice and in sexual offending respectively in England and Wales and elsewhere. This examination ultimately highlights challenges for restorative justice in the current risk-driven penal climate and advocates a need to re-evaluate its relationship with formal state justice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that shape corrections have to be applied to the local-density (LDA) and generalized gradient (GGA) approximations to the Kohn-Sham exchange-correlation potential in order to obtain reliable response properties in time dependent density functional theory calculations. Here we demonstrate that it is an oversimplified view that these shape corrections concern primarily the asymptotic part of the potential, and that they affect only Rydberg type transitions. The performance is assessed of two shape-corrected Kohn-Sham potentials, the gradient-regulated asymptotic connection procedure applied to the Becke-Perdew potential (BP-GRAC) and the statistical averaging of (model) orbital potentials (SAOP), versus LDA and GGA potentials, in molecular response calculations of the static average polarizability alpha, the Cauchy coefficient S-4, and the static average hyperpolarizability beta. The nature of the distortions of the LDA/GGA potentials is highlighted and it is shown that they introduce many spurious excited states at too low energy which may mix with valence excited states, resulting in wrong excited state compositions. They also lead to wrong oscillator strengths and thus to a wrong spectral structure of properties like the polarizability. LDA, Becke-Lee-Yang-Parr (BLYP), and Becke-Perdew (BP) characteristically underestimate contributions to alpha and S-4 from bound Rydberg-type states and overestimate those from the continuum. Cancellation of the errors in these contributions occasionally produces fortuitously good results. The distortions of the LDA, BLYP, and BP spectra are related to the deficiencies of the LDA/GGA potentials in both the bulk and outer molecular regions. In contrast, both SAOP and BP-GRAC potentials produce high quality polarizabilities for 21 molecules and also reliable Cauchy moments and hyperpolarizabilities for the selected molecules. The analysis for the N-2 molecule shows, that both SAOP and BP-GRAC yield reliable energies omega(i) and oscillator strengths f(i) of individual excitations, so that they reproduce well the spectral structure of alpha and S-4.(C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shape corrections to the standard approximate Kohn-Sham exchange-correlation (xc) potentials are considered with the aim to improve the excitation energies (especially for higher excitations) calculated with time-dependent density functional perturbation theory. A scheme of gradient-regulated connection (GRAC) of inner to outer parts of a model potential is developed. Asymptotic corrections based either on the potential of Fermi and Amaldi or van Leeuwen and Baerends (LB) are seamlessly connected to the (shifted) xc potential of Becke and Perdew (BP) with the GRAC procedure, and are employed to calculate the vertical excitation energies of the prototype molecules N-2, CO, CH2O, C2H4, C5NH5, C6H6, Li-2, Na-2, K-2. The results are compared with those of the alternative interpolation scheme of Tozer and Handy as well as with the results of the potential obtained with the statistical averaging of (model) orbital potentials. Various asymptotically corrected potentials produce high quality excitation energies, which in quite a few cases approach the benchmark accuracy of 0.1 eV for the electronic spectra. Based on these results, the potential BP-GRAC-LB is proposed for molecular response calculations, which is a smooth potential and a genuine "local" density functional with an analytical representation. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil carbon stores are a major component of the annual returns required by EU governments to the Intergovernmental Panel on Climate Change. Peat has a high proportion of soil carbon due to the relatively high carbon density of peat and organic-rich soils. For this reason it has become increasingly important to measure and model soil carbon stores and changes in peat stocks to facilitate the management of carbon changes over time. The approach investigated in this research evaluates the use of airborne geophysical (radiometric) data to estimate peat thickness using the attenuation of bedrock geology radioactivity by superficial peat cover. Remotely sensed radiometric data are validated with ground peat depth measurements combined with non-invasive geophysical surveys. Two field-based case studies exemplify and validate the results. Variography and kriging are used to predict peat thickness from point measurements of peat depth and airborne radiometric data and provide an estimate of uncertainty in the predictions. Cokriging, by assessing the degree of spatial correlation between recent remote sensed geophysical monitoring and previous peat depth models, is used to examine changes in peat stocks over time. The significance of the coregionalisation is that the spatial cross correlation between the remote and ground based data can be used to update the model of peat depth. The result is that by integrating remotely sensed data with ground geophysics, the need is reduced for extensive ground-based monitoring and invasive peat depth measurements. The overall goal is to provide robust estimates of peat thickness to improve estimates of carbon stocks. The implications from the research have a broader significance that promotes a reduction in the need for damaging onsite peat thickness measurement and an increase in the use of remote sensed data for carbon stock estimations.