959 resultados para Radio astronomy.
Atomic oxygen surface loss coefficient measurements in a capacitive/inductive radio-frequency plasma
Resumo:
Spatially resolved measurements of the atomic oxygen densities close to a sample surface in a dual mode (capacitive/inductive) rf plasma are used to measure the atomic oxygen surface loss coefficient beta on stainless steel and aluminum substrates, silicon and silicon dioxide wafers, and on polypropylene samples. beta is found to be particularly sensitive to the gas pressure for both operating modes. It is concluded that this is due to the effect of changing atom and ion flux to the surface. (C) 2002 American Institute of Physics.
Resumo:
The interaction between supernova ejecta and circumstellar matter, arising from previous episodes of mass loss, provides us with a means of constraining the progenitors of supernovae. Radio observations of a number of supernovae show quasi-periodic deviations from a strict power-law decline at late times. Although several possibilities have been put forward to explain these modulations, no single explanation has proven to be entirely satisfactory. Here we suggest that Luminous blue variables undergoing S-Doradus type variations give rise to enhanced phases of mass loss that are imprinted on the immediate environment of the exploding star as a series of density enhancements. The variations in mass loss arise from changes in the ionization balance of Fe, the dominant ion that drives the wind. With this idea, we find that both the recurrence timescale of the variability and the amplitude of the modulations are in line with the observations. Our scenario thus provides a natural, single-star explanation for the observed behaviour that is, in fact, expected on theoretical grounds.
Resumo:
An industrial, confined, dual frequency, capacitively coupled, radio-frequency plasma etch reactor Exelan®, Lam Research has been modified for spatially resolved optical measurements. Space and phase resolved optical emission spectroscopy yields insight into the dynamics of the discharge. A strong coupling of the two frequencies is observed in the emission profiles. Consequently, the ionization dynamics, probed through excitation, is determined by both frequencies. The control of plasma density by the high frequency is, therefore, also influenced by the low frequency. Hence, separate control of plasma density and ion energy is rather complex.
Resumo:
The dynamics of high energetic electrons (>= 11.7 eV) in a modified industrial confined dual-frequency capacitively coupled RF discharge (Exelan, Lam Research Inc.), operated at 1.937 MHz and 27.118 MHz, is investigated by means of phase resolved optical emission spectroscopy. Operating in a He-O-2. plasma with small rare gas admixtures the emission is measured, with one-dimensional spatial resolution along the discharge axis. Both the low and high frequency RF cycle are resolved. The diagnostic is based on time dependent measurements of the population densities of specifically chosen excited rare gas states. A time dependent model, based on rate equations, describes the dynamics of the population densities of these levels. Based on this model and the comparison of the excitation of various rare gas states, with different excitation thresholds, time and space resolved electron temperature, propagation velocity and qualitative electron density as well as electron energy distribution functions are determined. This information leads to a better understanding of the dual-frequency sheath dynamics and shows, that separate control of ion energy and electron density is limited.
Resumo:
A planar inductively coupled radio-frequency (rf) magnetic neutral loop discharge has been designed. It provides diagnostic access to both the main plasma production region as well as a remote plane for applications. Three coaxial coils are arranged to generate a specially designed inhomogeneous magnetic field structure with vanishing field along a ring in the discharge-the so-called neutral loop (NL). The plasma is generated by applying an oscillating rf electric field along the NL, induced through a four-turn, planar antenna operated at 13.56 MHz. Electron density and temperature measurements are performed under various parameter variations. Collisionless electron heating in the NL region allows plasma operation at comparatively low pressures, down to 10(-2) Pa, with a degree of ionization in the order of several per cent. Conventional plasma operation in inductive mode without applying the magnetic field is less efficient, in particular in the low pressure regime where the plasma cannot be sustained without magnetic fields.
Resumo:
Phase resolved optical emission spectroscopy, with high temporal resolution, shows that wave-particle interactions play a fundamental role in sustaining capacitively coupled rf plasmas. The measurements are in excellent agreement with a simple particle-in-cell simulation. Excitation and ionization mechanisms are dominated by beam-like electrons, energized through the advancing and retreating electric fields of the rf sheath. The associated large-amplitude electron waves, driven by a form of two-stream instability, result in power dissipation through electron trapping and phase mixing. (c) 2007 American Institute of Physics.
Resumo:
Changes of the electron dynamics during the mode transition (E- to H-mode) in a hydrogen radio-frequency (rf) inductively coupled plasma are investigated using space and phase resolved optical emission spectroscopy. The E- mode is characterized through relatively weak optical emission which is strongly modulated on a nanosecond time scale during the rf-cycle, with one pronounced maximum per cycle. The modulation in H-mode, with twice the rf-frequency, is significantly weaker while the emission intensities are about two orders of magnitude higher. In particular the transition between these two modes is studied under variations of rf-power input and gas pressure. Characteristic spatio-temporal structures are observed and can be understood in the frame of a simple model combining both coupling mechanisms in the transition regime.
Resumo:
We have operated 25-100 mu m diameter radio frequency microhollow cathode discharges stably, for many hours, in neon and in argon. Electrical and spectroscopic measurements were used to explore three possible electron heating modes and obtain detail regarding the electron energy distribution. Analysis points to the possibility of pendular electron heating at low voltages.
Resumo:
The electron dynamics in the low-pressure operation regime ($«$ 5 Pa) of a neon capacitively coupled plasma is investigated using phase-resolved optical emission spectroscopy. Plasma ionization and sustainment mechanisms are governed by the expanding and contracting sheath and complex wave–particle interactions. Electrons are energized through the advancing and retreating electric field of the RF sheath. The associated interaction of energetic sheath electrons with thermal bulk plasma electrons drives a two-stream instability also dissipating power in the plasma.
Resumo:
Plasma ionization in the low-pressure operation regime ( $«$ 5 Pa) of RF capacitively coupled plasmas (CCPs) is governed by a complex interplay of various mechanisms, such as field reversal, sheath expansion, and wave–particle interactions. In a previous paper, it was shown that experimental observations in a hydrogen CCP operated at 13.56 MHz are qualitatively well described in a 1-D symmetrical particle-in-cell (PIC) simulation. In this paper, a spherical asymmetrical PIC simulation that is closer to the conditions of the highly asymmetrical experimental device is used to simulate a low-pressure neon CCP operated at 2 MHz. The results show a similar behavior, with pronounced ionization through field reversal, sheath expansion, and wave–particle interactions, and can be exploited for more accurate quantitative comparisons with experimental observations.
Resumo:
Two electrical techniques that are frequently used to characterize radio frequency plasmas are described: current-voltage probes for plasma power input and compensated Langmuir probes for electron energy probability functions and other parameters. The following examples of the use of these techniques, sometimes in conjunction with other diagnostic methods, are presented: plasma source standardization, plasma system comparison, power efficiency, plasma modelling and complex processing plasma mechanisms.
Resumo:
Time- and space-resolved magnetic (B-dot) probe measurements in combination with measurements of the plasma parameters were carried out to investigate the relationship between the formation and propagation of helicon modes and the radio frequency (rf) power deposition in the core of a helicon plasma. The Poynting flux and the absorbed power density are deduced from the measured rf magnetic field distribution in amplitude and phase. Special attention is devoted to the helicon absorption under linear and nonlinear conditions. The present investigations are attached to recent observations in which the nonlinear nature of the helicon wave absorption has been demonstrated by showing that the strong absorption of helicon waves is correlated with parametric excitation of electrostatic fluctuations.
Resumo:
The complex dynamics of radio-frequency driven atmospheric pressure plasma jets is investigated using various optical diagnostic techniques and numerical simulations. Absolute number densities of ground state atomic oxygen radicals in the plasma effluent are measured by two-photon absorption laser induced fluorescence spectroscopy (TALIF). Spatial profiles are compared with (vacuum) ultra-violet radiation from excited states of atomic oxygen and molecular oxygen, respectively. The excitation and ionization dynamics in the plasma core are dominated by electron impact and observed by space and phase resolved optical emission spectroscopy (PROES). The electron dynamics is governed through the motion of the plasma boundary sheaths in front of the electrodes as illustrated in numerical simulations using a hybrid code based on fluid equations and kinetic treatment of electrons.
Resumo:
Inductively coupled radio-frequency plasmas can be operated in two distinct modes. At low power and comparatively low plasma densities the plasma is sustained in capacitive mode (E-mode). As the plasma density increases a transition to inductive mode (H-mode) is observed. This transition region is of particular interest and governed by non-linear dynamics, which under certain conditions results in structure formation with strong spatial gradients in light emission. These modes show pronounced differences is various measureable quantities e.g. electron densities, electron energy distribution functions, ion energy distribution functions, dynamics of optical light emission. Here the transition from E- to H- mode in an oxygen containing inductively coupled plasma (ICP) is investigated using space and phase resolved optical emission spectroscopy (PROES). The emission, measured phase resolved, allows investigation of the electron dynamics within the rf cycle, important for understanding the power coupling and ionization mechanisms in the discharge. The temporal variation of the emission reflects the dynamics of relatively high-energy electrons. It is possible to distinguish between E- and H-mode from the intensity and temporal behaviour of the emission.
Resumo:
Plasma ionization, and associated mode transitions, in dual radio-frequency driven atmospheric pressure plasmas are governed through nonlinear frequency coupling in the dynamics of the plasma boundary sheath. Ionization in low-power mode is determined by the nonlinear coupling of electron heating and the momentary local plasma density. Ionization in high-power mode is driven by electron avalanches during phases of transient high electric fields within the boundary sheath. The transition between these distinctly different modes is controlled by the total voltage of both frequency components.