971 resultados para Radial Basis Function


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A look is taken at the use of radial basis functions (RBFs), for nonlinear system identification. RBFs are firstly considered in detail themselves and are subsequently compared with a multi-layered perceptron (MLP), in terms of performance and usage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work describes the use of a mathematical tool to solve problems arising from control theory, including the identification, analysis of the phase portrait and stability, as well as the temporal evolution of the plant s current induction motor. The system identification is an area of mathematical modeling that has as its objective the study of techniques which can determine a dynamic model in representing a real system. The tool used in the identification and analysis of nonlinear dynamical system is the Radial Basis Function (RBF). The process or plant that is used has a mathematical model unknown, but belongs to a particular class that contains an internal dynamics that can be modeled.Will be presented as contributions to the analysis of asymptotic stability of the RBF. The identification using radial basis function is demonstrated through computer simulations from a real data set obtained from the plant

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Redes neurais pulsadas - redes que utilizam uma codificação temporal da informação - têm despontado como uma promissora abordagem dentro do paradigma conexionista, emergente da ciência cognitiva. Um desses novos modelos é a rede neural pulsada com função de base radial, que é capaz de armazenar informação nos tempos de atraso axonais dos neurônios. Um algoritmo de aprendizado foi aplicado com sucesso nesta rede pulsada, que se mostrou capaz de mapear uma seqüência de pulsos de entrada em uma seqüência de pulsos de saída. Mais recentemente, um método baseado no uso de campos receptivos gaussianos foi proposto para codificar dados constantes em uma seqüência de pulsos temporais. Este método tornou possível a essa rede lidar com dados computacionais. O processo de aprendizado desta nova rede não se encontra plenamente compreendido e investigações mais profundas são necessárias para situar este modelo dentro do contexto do aprendizado de máquinas e também para estabelecer as habilidades e limitações desta rede. Este trabalho apresenta uma investigação desse novo classificador e um estudo de sua capacidade de agrupar dados em três dimensões, particularmente procurando estabelecer seus domínios de aplicação e horizontes no campo da visão computacional.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a framework for Bayesian inference in continuous-time diffusion processes. The new method is directly related to the recently proposed variational Gaussian Process approximation (VGPA) approach to Bayesian smoothing of partially observed diffusions. By adopting a basis function expansion (BF-VGPA), both the time-dependent control parameters of the approximate GP process and its moment equations are projected onto a lower-dimensional subspace. This allows us both to reduce the computational complexity and to eliminate the time discretisation used in the previous algorithm. The new algorithm is tested on an Ornstein-Uhlenbeck process. Our preliminary results show that BF-VGPA algorithm provides a reasonably accurate state estimation using a small number of basis functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is about the study of relationships between experimental dynamical systems. The basic approach is to fit radial basis function maps between time delay embeddings of manifolds. We have shown that under certain conditions these maps are generically diffeomorphisms, and can be analysed to determine whether or not the manifolds in question are diffeomorphically related to each other. If not, a study of the distribution of errors may provide information about the lack of equivalence between the two. The method has applications wherever two or more sensors are used to measure a single system, or where a single sensor can respond on more than one time scale: their respective time series can be tested to determine whether or not they are coupled, and to what degree. One application which we have explored is the determination of a minimum embedding dimension for dynamical system reconstruction. In this special case the diffeomorphism in question is closely related to the predictor for the time series itself. Linear transformations of delay embedded manifolds can also be shown to have nonlinear inverses under the right conditions, and we have used radial basis functions to approximate these inverse maps in a variety of contexts. This method is particularly useful when the linear transformation corresponds to the delay embedding of a finite impulse response filtered time series. One application of fitting an inverse to this linear map is the detection of periodic orbits in chaotic attractors, using suitably tuned filters. This method has also been used to separate signals with known bandwidths from deterministic noise, by tuning a filter to stop the signal and then recovering the chaos with the nonlinear inverse. The method may have applications to the cancellation of noise generated by mechanical or electrical systems. In the course of this research a sophisticated piece of software has been developed. The program allows the construction of a hierarchy of delay embeddings from scalar and multi-valued time series. The embedded objects can be analysed graphically, and radial basis function maps can be fitted between them asynchronously, in parallel, on a multi-processor machine. In addition to a graphical user interface, the program can be driven by a batch mode command language, incorporating the concept of parallel and sequential instruction groups and enabling complex sequences of experiments to be performed in parallel in a resource-efficient manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article explores the possibilities of formalizing and explaining the mechanisms that support spatial and social perspective alignment sustained over the duration of a social interaction. The basic proposed principle is that in social contexts the mechanisms for sensorimotor transformations and multisensory integration (learn to) incorporate information relative to the other actor(s), similar to the "re-calibration" of visual receptive fields in response to repeated tool use. This process aligns or merges the co-actors' spatial representations and creates a "Shared Action Space" (SAS) supporting key computations of social interactions and joint actions; for example, the remapping between the coordinate systems and frames of reference of the co-actors, including perspective taking, the sensorimotor transformations required for lifting jointly an object, and the predictions of the sensory effects of such joint action. The social re-calibration is proposed to be based on common basis function maps (BFMs) and could constitute an optimal solution to sensorimotor transformation and multisensory integration in joint action or more in general social interaction contexts. However, certain situations such as discrepant postural and viewpoint alignment and associated differences in perspectives between the co-actors could constrain the process quite differently. We discuss how alignment is achieved in the first place, and how it is maintained over time, providing a taxonomy of various forms and mechanisms of space alignment and overlap based, for instance, on automaticity vs. control of the transformations between the two agents. Finally, we discuss the link between low-level mechanisms for the sharing of space and high-level mechanisms for the sharing of cognitive representations. © 2013 Pezzulo, Iodice, Ferraina and Kessler.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a new method using radial basis neural networks in order to find the classification and the recognition of trees species for forest inventories. This method computes the wood volume using a set of data easily obtained. The results that are obtained improve the used classic and statistical models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper an outliers resistant learning algorithm for the radial-basis-fuzzy-wavelet-neural network based on R. Welsh criterion is proposed. Suggested learning algorithm under consideration allows the signals processing in presence of significant noise level and outliers. The robust learning algorithm efficiency is investigated and confirmed by the number of experiments including medical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which several ribs and the sternum grow abnormally. Nowadays, the surgical correction is carried out in children and adults through Nuss technic. This technic has been shown to be safe with major drivers as cosmesis and the prevention of psychological problems and social stress. Nowadays, no application is known to predict the cosmetic outcome of the pectus excavatum surgical correction. Such tool could be used to help the surgeon and the patient in the moment of deciding the need for surgery correction. This work is a first step to predict postsurgical outcome in pectus excavatum surgery correction. Facing this goal, it was firstly determined a point cloud of the skin surface along the thoracic wall using Computed Tomography (before surgical correction) and the Polhemus FastSCAN (after the surgical correction). Then, a surface mesh was reconstructed from the two point clouds using a Radial Basis Function algorithm for further affine registration between the meshes. After registration, one studied the surgical correction influence area (SCIA) of the thoracic wall. This SCIA was used to train, test and validate artificial neural networks in order to predict the surgical outcome of pectus excavatum correction and to determine the degree of convergence of SCIA in different patients. Often, ANN did not converge to a satisfactory solution (each patient had its own deformity characteristics), thus invalidating the creation of a mathematical model capable of estimating, with satisfactory results, the postsurgical outcome

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pectus Carinatum is a deformity of the chest wall, characterized by an anterior protrusion of the sternum, often corrected surgically due to cosmetic motivation. This work presents an alternative approach to the current open surgery option, proposing a novel technique based on a personalized orthosis. Two different processes for the orthosis’ personalization are presented. One based on a 3D laser scan of the patient chest, followed by the reconstruction of the thoracic wall mesh using a radial basis function, and a second one, based on a computer tomography scan followed by a neighbouring cells algorithm. The axial position where the orthosis is to be located is automatically calculated using a Ray-Triangle intersection method, whose outcome is input to a pseudo Kochenek interpolating spline method to define the orthosis curvature. Results show that no significant differences exist between the patient chest physiognomy and the curvature angle and size of the orthosis, allowing a better cosmetic outcome and less initial discomfort

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pectus Carinatum is a deformity of the chest wall, characterized by an anterior protrusion of the sternum, often corrected surgically due to cosmetic motivation. This work presents an alternative approach to the current open surgery option, proposing a novel technique based on a personalized orthosis. Two different processes for the orthosis’ personalization are presented. One based on a 3D laser scan of the patient chest, followed by the reconstruction of the thoracic wall mesh using a radial basis function, and a second one, based on a computer tomography scan followed by a neighbouring cells algorithm. The axial position where the orthosis is to be located is automatically calculated using a Ray-Triangle intersection method, whose outcome is input to a pseudo Kochenek interpolating spline method to define the orthosis curvature. Results show that no significant differences exist between the patient chest physiognomy and the curvature angle and size of the orthosis, allowing a better cosmetic outcome and less initial discomfort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents several forecasting methodologies based on the application of Artificial Neural Networks (ANN) and Support Vector Machines (SVM), directed to the prediction of the solar radiance intensity. The methodologies differ from each other by using different information in the training of the methods, i.e, different environmental complementary fields such as the wind speed, temperature, and humidity. Additionally, different ways of considering the data series information have been considered. Sensitivity testing has been performed on all methodologies in order to achieve the best parameterizations for the proposed approaches. Results show that the SVM approach using the exponential Radial Basis Function (eRBF) is capable of achieving the best forecasting results, and in half execution time of the ANN based approaches.