962 resultados para RWMA QOS TCP ritrasmissione OMNET INET AccessPoint MAC
Resumo:
Consider a network where all nodes share a single broadcast domain such as a wired broadcast network. Nodes take sensor readings but individual sensor readings are not the most important pieces of data in the system. Instead, we are interested in aggregated quantities of the sensor readings such as minimum and maximum values, the number of nodes and the median among a set of sensor readings on different nodes. In this paper we show that a prioritized medium access control (MAC) protocol may advantageously be exploited to efficiently compute aggregated quantities of sensor readings. In this context, we propose a distributed algorithm that has a very low time and message-complexity for computing certain aggregated quantities. Importantly, we show that if every sensor node knows its geographical location, then sensor data can be interpolated with our novel distributed algorithm, and the message-complexity of the algorithm is independent of the number of nodes. Such an interpolation of sensor data can be used to compute any desired function; for example the temperature gradient in a room (e.g., industrial plant) densely populated with sensor nodes, or the gas concentration gradient within a pipeline or traffic tunnel.
Resumo:
Due to the growing complexity and dynamism of many embedded application domains (including consumer electronics, robotics, automotive and telecommunications), it is increasingly difficult to react to load variations and adapt the system's performance in a controlled fashion within an useful and bounded time. This is particularly noticeable when intending to benefit from the full potential of an open distributed cooperating environment, where service characteristics are not known beforehand and tasks may exhibit unrestricted QoS inter-dependencies. This paper proposes a novel anytime adaptive QoS control policy in which the online search for the best set of QoS levels is combined with each user's personal preferences on their services' adaptation behaviour. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves as the algorithms are given more time to run, with a minimum overhead when compared against their traditional versions.
Resumo:
Due to the growing complexity and adaptability requirements of real-time embedded systems, which often exhibit unrestricted inter-dependencies among supported services and user-imposed quality constraints, it is increasingly difficult to optimise the level of service of a dynamic task set within an useful and bounded time. This is even more difficult when intending to benefit from the full potential of an open distributed cooperating environment, where service characteristics are not known beforehand. This paper proposes an iterative refinement approach for a service’s QoS configuration taking into account services’ inter-dependencies and quality constraints, and trading off the achieved solution’s quality for the cost of computation. Extensive simulations demonstrate that the proposed anytime algorithm is able to quickly find a good initial solution and effectively optimises the rate at which the quality of the current solution improves as the algorithm is given more time to run. The added benefits of the proposed approach clearly surpass its reducedoverhead.
Resumo:
In heterogeneous environments, diversity of resources among the devices may affect their ability to perform services with specific QoS constraints, and drive peers to group themselves in a coalition for cooperative service execution. The dynamic selection of peers should be influenced by user’s QoS requirements as well as local computation availability, tailoring provided service to user’s specific needs. However, complex dynamic real-time scenarios may prevent the possibility of computing optimal service configurations before execution. An iterative refinement approach with the ability to trade off deliberation time for the quality of the solution is proposed. We state the importance of quickly finding a good initial solution and propose heuristic evaluation functions that optimise the rate at which the quality of the current solution improves as the algorithms have more time to run.
Improving the IEEE 802.15.4 Slotted CSMA/CA MAC for time-critical events in wireless sensor networks
Resumo:
In beacon-enabled mode, IEEE 802.15.4 is ruled by the slotted CSMA/CA Medium Access Control (MAC) protocol. The standard slotted CSMA/CA mechanism does not provide any means of differentiated services to improve the quality of service for timecritical events (such as alarms, time slot reservation, PAN management messages etc.). In this paper, we present and discuss practical service differentiation mechanisms to improve the performance of slotted CSMA/CA for time-critical events, with only minor add-ons to the protocol. The contribution of our proposal is more practical than theoretical since our initial requirement is to leave the original algorithm of the slotted CSMA/CA unchanged, but rather tuning its parameters adequately according to the criticality of the messages. We present a simulation study based on an accurate model of the IEEE 802.15.4 MAC protocol, to evaluate the differentiated service strategies. Four scenarios with different settings of the slotted CSMA/CA parameters are defined. Each scenario is evaluated for FIFO and Priority Queuing. The impact of the hiddennode problem is also analyzed, and a solution to mitigate it is proposed.
Resumo:
Consider a distributed computer system such that every computer node can perform a wireless broadcast and when it does so, all other nodes receive this message. The computer nodes take sensor readings but individual sensor readings are not very important. It is important however to compute the aggregated quantities of these sensor readings. We show that a prioritized medium access control (MAC) protocol for wireless broadcast can compute simple aggregated quantities in a single transaction, and more complex quantities with many (but still a small number of) transactions. This leads to significant improvements in the time-complexity and as a consequence also similar reduction in energy “consumption”.
Resumo:
Most of today’s embedded systems are required to work in dynamic environments, where the characteristics of the computational load cannot always be predicted in advance. Furthermore, resource needs are usually data dependent and vary over time. Resource constrained devices may need to cooperate with neighbour nodes in order to fulfil those requirements and handle stringent non-functional constraints. This paper describes a framework that facilitates the distribution of resource intensive services across a community of nodes, forming temporary coalitions for a cooperative QoSaware execution. The increasing need to tailor provided service to each application’s specific needs determines the dynamic selection of peers to form such a coalition. The system is able to react to load variations, degrading its performance in a controlled fashion if needed. Isolation between different services is achieved by guaranteeing a minimal service quality to accepted services and by an efficient overload control that considers the challenges and opportunities of dynamic distributed embedded systems.
Resumo:
The scarcity and diversity of resources among the devices of heterogeneous computing environments may affect their ability to perform services with specific Quality of Service constraints, particularly in dynamic distributed environments where the characteristics of the computational load cannot always be predicted in advance. Our work addresses this problem by allowing resource constrained devices to cooperate with more powerful neighbour nodes, opportunistically taking advantage of global distributed resources and processing power. Rather than assuming that the dynamic configuration of this cooperative service executes until it computes its optimal output, the paper proposes an anytime approach that has the ability to tradeoff deliberation time for the quality of the solution. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves at each iteration, with an overhead that can be considered negligible.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
An evaluation of the IgM antibody immune response against yellow fever using strain 17D was carried out by MAC-ELISA and PRNT. The results showed an agreement of 97% between both tests and the authors conclude that MAC-ELISA can be used as a specific and sensitive asssay to replace the PRNT for detecting yellow fever antibodies in human sera, after vaccination programs.
Resumo:
Mycobacterium avium complex (MAC) is frequently isolated from patients with late complications of Acquired Immunodeficiency Syndrome (AIDS), especially in North America and Europe. However, its isolation from the central nervous system (CNS) has been seldom reported in these countries. MAC infections in AIDS patients in African and Latin American countries are believed to be uncommon. We report the isolation of MAC from cerebrospinal fluid (CSF) of 11 AIDS patients out of 1723 (0.63%) seen at "Centro de Referência e Treinamento - AIDS", São Paulo and discuss the significance of its isolation.
Resumo:
Before the AIDS pandemia, the Mycobacterium avium complex (MAC) was responsible in most cases for the pneumopathies that attack patients with basic chronic pulmonary diseases such as emphysema and chronic bronchitis36. In 1981, with the advent of the acquired immunodeficiency syndrome (AIDS), MAC started to represent one of the most frequent bacterial diseases among AIDS patients, with the disseminated form of the disease being the major clinical manifestation of the infection8. Between January 1989 and February 1991, the Section of Mycobacteria of the Adolfo Lutz Institute, São Paulo, isolated MAC from 103 patients by culturing different sterile and no-sterile processed specimens collected from 2304 patients seen at the AIDS Reference and Training Center and/or Emilio Ribas Infectology Institute. Disseminated disease was diagnosed in 29 of those patients on the basis of MAC isolation from blood and/or bone marrow aspirate. The other 74 patients were divided into categories highly (5), moderately (26) and little suggestive of disease (43) according to the criteria of DAVIDSON (1989)10. The various criteria for MAC isolation from sterile and non-sterile specimens are discussed.
Resumo:
IEEE 802.11 is one of the most well-established and widely used standard for wireless LAN. Its Medium Access control (MAC) layer assumes that the devices adhere to the standard’s rules and timers to assure fair access and sharing of the medium. However, wireless cards driver flexibility and configurability make it possible for selfish misbehaving nodes to take advantages over the other well-behaving nodes. The existence of selfish nodes degrades the QoS for the other devices in the network and may increase their energy consumption. In this paper we propose a green solution for selfish misbehavior detection in IEEE 802.11-based wireless networks. The proposed scheme works in two phases: Global phase which detects whether the network contains selfish nodes or not, and Local phase which identifies which node or nodes within the network are selfish. Usually, the network must be frequently examined for selfish nodes during its operation since any node may act selfishly. Our solution is green in the sense that it saves the network resources as it avoids wasting the nodes energy by examining all the individual nodes of being selfish when it is not necessary. The proposed detection algorithm is evaluated using extensive OPNET simulations. The results show that the Global network metric clearly indicates the existence of a selfish node while the Local nodes metric successfully identified the selfish node(s). We also provide mathematical analysis for the selfish misbehaving and derived formulas for the successful channel access probability.