922 resultados para ROC Regression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An individual experiences double coverage when he bene ts from more than one health insurance plan at the same time. This paper examines the impact of such supplementary insurance on the demand for health care services. Its novelty is that within the context of count data modelling and without imposing restrictive parametric assumptions, the analysis is carried out for di¤erent points of the conditional distribution, not only for its mean location. Results indicate that moral hazard is present across the whole outcome distribution for both public and private second layers of health insurance coverage but with greater magnitude in the latter group. By looking at di¤erent points we unveil that stronger double coverage e¤ects are smaller for high levels of usage. We use data for Portugal, taking advantage of particular features of the public and private protection schemes on top of the statutory National Health Service. By exploring the last Portuguese Health Survey, we were able to evaluate their impacts on the consumption of doctor visi

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: A growing body of evidence shows the prognostic value of oxygen uptake efficiency slope (OUES), a cardiopulmonary exercise test (CPET) parameter derived from the logarithmic relationship between O(2) consumption (VO(2)) and minute ventilation (VE) in patients with chronic heart failure (CHF). OBJECTIVE: To evaluate the prognostic value of a new CPET parameter - peak oxygen uptake efficiency (POUE) - and to compare it with OUES in patients with CHF. METHODS: We prospectively studied 206 consecutive patients with stable CHF due to dilated cardiomyopathy - 153 male, aged 53.3±13.0 years, 35.4% of ischemic etiology, left ventricular ejection fraction 27.7±8.0%, 81.1% in sinus rhythm, 97.1% receiving ACE-Is or ARBs, 78.2% beta-blockers and 60.2% spironolactone - who performed a first maximal symptom-limited treadmill CPET, using the modified Bruce protocol. In 33% of patients an cardioverter-defibrillator (ICD) or cardiac resynchronization therapy device (CRT-D) was implanted during follow-up. Peak VO(2), percentage of predicted peak VO(2), VE/VCO(2) slope, OUES and POUE were analyzed. OUES was calculated using the formula VO(2) (l/min) = OUES (log(10)VE) + b. POUE was calculated as pVO(2) (l/min) / log(10)peakVE (l/min). Correlation coefficients between the studied parameters were obtained. The prognosis of each variable adjusted for age was evaluated through Cox proportional hazard models and R2 percent (R2%) and V index (V6) were used as measures of the predictive accuracy of events of each of these variables. Receiver operating characteristic (ROC) curves from logistic regression models were used to determine the cut-offs for OUES and POUE. RESULTS: pVO(2): 20.5±5.9; percentage of predicted peak VO(2): 68.6±18.2; VE/VCO(2) slope: 30.6±8.3; OUES: 1.85±0.61; POUE: 0.88±0.27. During a mean follow-up of 33.1±14.8 months, 45 (21.8%) patients died, 10 (4.9%) underwent urgent heart transplantation and in three patients (1.5%) a left ventricular assist device was implanted. All variables proved to be independent predictors of this combined event; however, VE/VCO2 slope was most strongly associated with events (HR 11.14). In this population, POUE was associated with a higher risk of events than OUES (HR 9.61 vs. 7.01), and was also a better predictor of events (R2: 28.91 vs. 22.37). CONCLUSION: POUE was more strongly associated with death, urgent heart transplantation and implantation of a left ventricular assist device and proved to be a better predictor of events than OUES. These results suggest that this new parameter can increase the prognostic value of CPET in patients with CHF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In health related research it is common to have multiple outcomes of interest in a single study. These outcomes are often analysed separately, ignoring the correlation between them. One would expect that a multivariate approach would be a more efficient alternative to individual analyses of each outcome. Surprisingly, this is not always the case. In this article we discuss different settings of linear models and compare the multivariate and univariate approaches. We show that for linear regression models, the estimates of the regression parameters associated with covariates that are shared across the outcomes are the same for the multivariate and univariate models while for outcome-specific covariates the multivariate model performs better in terms of efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The European Surgical Outcomes Study described mortality following in-patient surgery. Several factors were identified that were able to predict poor outcomes in a multivariate analysis. These included age, procedure urgency, severity and type and the American Association of Anaesthesia score. This study describes in greater detail the relationship between the American Association of Anaesthesia score and postoperative mortality. METHODS: Patients in this 7-day cohort study were enrolled in April 2011. Consecutive patients aged 16 years and older undergoing inpatient non-cardiac surgery with a recorded American Association of Anaesthesia score in 498 hospitals across 28 European nations were included and followed up for a maximum of 60 days. The primary endpoint was in-hospital mortality. Decision tree analysis with the CHAID (SPSS) system was used to delineate nodes associated with mortality. RESULTS: The study enrolled 46,539 patients. Due to missing values, 873 patients were excluded, resulting in the analysis of 45,666 patients. Increasing American Association of Anaesthesia scores were associated with increased admission rates to intensive care and higher mortality rates. Despite a progressive relationship with mortality, discrimination was poor, with an area under the ROC curve of 0.658 (95% CI 0.642 - 0.6775). Using regression trees (CHAID), we identified four discrete American Association of Anaesthesia nodes associated with mortality, with American Association of Anaesthesia 1 and American Association of Anaesthesia 2 compressed into the same node. CONCLUSION: The American Association of Anaesthesia score can be used to determine higher risk groups of surgical patients, but clinicians cannot use the score to discriminate between grades 1 and 2. Overall, the discriminatory power of the model was less than acceptable for widespread use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using Bayesian spatiotemporal methods. METHODS: We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a Bayesian approach and Markov Chain Monte Carlo (MCMC) methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. RESULTS: The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI) are important in the prediction of malaria cases. CONCLUSIONS: It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the Bayesian paradigm is a good strategy for modeling malaria counts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: INTRODUCTION: Geographic information systems (GIS) enable public health data to be analyzed in terms of geographical variability and the relationship between risk factors and diseases. This study discusses the application of the geographic weighted regression (GWR) model to health data to improve the understanding of spatially varying social and clinical factors that potentially impact leprosy prevalence. METHODS: This ecological study used data from leprosy case records from 1998-2006, aggregated by neighborhood in the Duque de Caxias municipality in the State of Rio de Janeiro, Brazil. In the GWR model, the associations between the log of the leprosy detection rate and social and clinical factors were analyzed. RESULTS: Maps of the estimated coefficients by neighborhood confirmed the heterogeneous spatial relationships between the leprosy detection rates and the predictors. The proportion of households with piped water was associated with higher detection rates, mainly in the northeast of the municipality. Indeterminate forms were strongly associated with higher detections rates in the south, where access to health services was more established. CONCLUSIONS: GWR proved a useful tool for epidemiological analysis of leprosy in a local area, such as Duque de Caxias. Epidemiological analysis using the maps of the GWR model offered the advantage of visualizing the problem in sub-regions and identifying any spatial dependence in the local study area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioinformática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extreme value models are widely used in different areas. The Birnbaum–Saunders distribution is receiving considerable attention due to its physical arguments and its good properties. We propose a methodology based on extreme value Birnbaum–Saunders regression models, which includes model formulation, estimation, inference and checking. We further conduct a simulation study for evaluating its performance. A statistical analysis with real-world extreme value environmental data using the methodology is provided as illustration.