947 resultados para RNA-POLYMERASE HOLOENZYME
Resumo:
(p) ppGpp, a secondary messenger, is induced under stress and shows pleiotropic response. It binds to RNA polymerase and regulates transcription in Escherichia coli. More than 25 years have passed since the first discovery was made on the direct interaction of ppGpp with E. coli RNA polymerase. Several lines of evidence suggest different modes of ppGpp binding to the enzyme. Earlier cross-linking experiments suggested that the beta-subunit of RNA polymerase is the preferred site for ppGpp, whereas recent crystallographic studies pinpoint the interface of beta'/omega-subunits as the site of action. With an aim to validate the binding domain and to follow whether tetra-and pentaphosphate guanosines have different location on RNA polymerase, this work was initiated. RNA polymerase was photo-labeled with 8-azido-ppGpp/8-azido-pppGpp, and the product was digested with trypsin and subjected to mass spectrometry analysis. We observed three new peptides in the trypsin digest of the RNA polymerase labeled with 8-azido-ppGpp, of which two peptides correspond to the same pocket on beta'-subunit as predicted by X-ray structural analysis, whereas the third peptide was mapped on the beta-subunit. In the case of 8-azido-pppGpp-labeled RNA polymerase, we have found only one cross-linked peptide from the beta'-subunit. However, we were unable to identify any binding site of pppGpp on the beta-subunit. Interestingly, we observed that pppGpp at high concentration competes out ppGpp bound to RNA polymerase more efficiently, whereas ppGpp cannot titrate out pppGpp. The competition between tetraphosphate guanosine and pentaphosphate guanosine for E. coli RNA polymerase was followed by gel-based assay as well as by a new method known as DRaCALA assay.
Resumo:
The Arabidopsis genome contains a highly complex and abundant population of small RNAs, and many of the endogenous siRNAs are dependent on RNA-Dependent RNA Polymerase 2 (RDR2) for their biogenesis. By analyzing an rdr2 loss-of-function mutant using two different parallel sequencing technologies, MPSS and 454, we characterized the complement of miRNAs expressed in Arabidopsis inflorescence to considerable depth. Nearly all known miRNAs were enriched in this mutant and we identified 13 new miRNAs, all of which were relatively low abundance and constitute new families. Trans-acting siRNAs (ta-siRNAs) were even more highly enriched. Computational and gel blot analyses suggested that the minimal number of miRNAs in Arabidopsis is approximately 155. The size profile of small RNAs in rdr2 reflected enrichment of 21-nt miRNAs and other classes of siRNAs like ta-siRNAs, and a significant reduction in 24-nt heterochromatic siRNAs. Other classes of small RNAs were found to be RDR2-independent, particularly those derived from long inverted repeats and a subset of tandem repeats. The small RNA populations in other Arabidopsis small RNA biogenesis mutants were also examined; a dcl2/3/4 triple mutant showed a similar pattern to rdr2, whereas dcl1-7 and rdr6 showed reductions in miRNAs and ta-siRNAs consistent with their activities in the biogenesis of these types of small RNAs. Deep sequencing of mutants provides a genetic approach for the dissection and characterization of diverse small RNA populations and the identification of low abundance miRNAs.
Resumo:
In addition to the three RNA polymerases (RNAP I-III) shared by all eukaryotic organisms, plant genomes encode a fourth RNAP (RNAP IV) that appears to be specialized in the production of siRNAs. Available data support a model in which dsRNAs are generated by RNAP IV and RNA-dependent RNAP 2 (RDR2) and processed by DICER (DCL) enzymes into 21- to 24-nt siRNAs, which are associated with different ARGONAUTE (AGO) proteins for transcriptional or posttranscriptional gene silencing. However, it is not yet clear what fraction of genomic siRNA production is RNAP IV-dependent, and to what extent these siRNAs are preferentially processed by certain DCL(s) or associated with specific AGOs for distinct downstream functions. To address these questions on a genome-wide scale, we sequenced approximately 335,000 siRNAs from wild-type and RNAP IV mutant Arabidopsis plants by using 454 technology. The results show that RNAP IV is required for the production of >90% of all siRNAs, which are faithfully produced from a discrete set of genomic loci. Comparisons of these siRNAs with those accumulated in rdr2 and dcl2 dcl3 dcl4 and those associated with AGO1 and AGO4 provide important information regarding the processing, channeling, and functions of plant siRNAs. We also describe a class of RNAP IV-independent siRNAs produced from endogenous single-stranded hairpin RNA precursors.
Resumo:
Classical swine fever virus (CSFV) non-structural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase (RdRp), a key enzyme which initiates RNA replication by a de novo mechanism without a primer and is a potential target for anti-virus therapy. We expressed the NS5B protein in Escherichia coli. The rGTP can stimulate de novo initiation of RNA synthesis and mutation of the GDD motif to Gly-Asp-Asp (GAA) abolishes the RNA synthesis. To better understand the mechanism of viral RNA synthesis in CSFV, a three-dimensional model was built by homology modeling based on the alignment with several virus RdRps. The model contains 605 residues folded in the characteristic fingers, palm and thumb domains. The fingers domain contains an N-terminal region that plays an important role in conformational change. We propose that the experimentally observed promotion of polymerase efficiency by rGTP is probably due to the conformational changes of the polymerase caused by binding the rGTP. Mutation of the GDD to GAA interferes with the interaction between the residues at the polymerase active site and metal ions, and thus renders the polymerase inactive. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Double-stranded RNA (dsRNA) has been shown to be a useful tool for silencing genes in zebrafish (Danio rerio), while the blocking specificity of dsRNA is still of major concern for application. It was reported that siRNA (small interfering RNA) prepared by endoribonuclease digestion (esiRNA) could efficiently silence endogenous gene expression in mammalian embryos. To test whether esiRNA could work in zebrafish, we utilized Escherichia coli RNaseIII to digest dsRNA of zebrafish no tail (ntl), a mesoderm determinant in zebrafish and found that esi-ntl could lead to developmental defects, however, the effective dose was so close to the toxic dose that esi-ntl often led to non-specific developmental defects. Consequently, we utilized SP6 RNA polymerase to produce si-ntl, siRNA designed against ntl, by in vitro transcription. By injecting in vitro synthesized si-ntl into zebrafish zygotes, we obtained specific phenocopies of reported mutants of ntl. We achieved up to a 59%no tail phenotype when the injection concentration was as high as 4 mu g/mu L. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization analysis showed that si-ntl could largely and specifically reduce mRNA levels of the ntl gene. As a result, our data indicate that esiRNA is unable to cause specific developmental defects in zebrafish, while siRNA should be an alternative for downregulation of specific gene expression in zebrafish in cases where RNAi techniques are applied to zebrafish reverse genetics.
Resumo:
BRCA1 has been implicated in numerous DNA repair pathways that maintain genome integrity, however the function responsible for its tumor suppressor activity in breast cancer remains obscure. To identify the most highly conserved of the many BRCA1 functions, we screened the evolutionarily distant eukaryote Saccharomyces cerevisiae for mutants that suppressed the G1 checkpoint arrest and lethality induced following heterologous BRCA1 expression. A genome-wide screen in the diploid deletion collection combined with a screen of ionizing radiation sensitive gene deletions identified mutants that permit growth in the presence of BRCA1. These genes delineate a metabolic mRNA pathway that temporally links transcription elongation (SPT4, SPT5, CTK1, DEF1) to nucleopore-mediated mRNA export (ASM4, MLP1, MLP2, NUP2, NUP53, NUP120, NUP133, NUP170, NUP188, POM34) and cytoplasmic mRNA decay at P-bodies (CCR4, DHH1). Strikingly, BRCA1 interacted with the phosphorylated RNA polymerase II (RNAPII) carboxy terminal domain (P-CTD), phosphorylated in the pattern specified by the CTDK-I kinase, to induce DEF1-dependent cleavage and accumulation of a RNAPII fragment containing the P-CTD. Significantly, breast cancer associated BRCT domain defects in BRCA1 that suppressed P-CTD cleavage and lethality in yeast also suppressed the physical interaction of BRCA1 with human SPT5 in breast epithelial cells, thus confirming SPT5 as a relevant target of BRCA1 interaction. Furthermore, enhanced P-CTD cleavage was observed in both yeast and human breast cells following UV-irradiation indicating a conserved eukaryotic damage response. Moreover, P-CTD cleavage in breast epithelial cells was BRCA1-dependent since damage-induced P-CTD cleavage was only observed in the mutant BRCA1 cell line HCC1937 following ectopic expression of wild type BRCA1. Finally, BRCA1, SPT5 and hyperphosphorylated RPB1 form a complex that was rapidly degraded following MMS treatment in wild type but not BRCA1 mutant breast cells. These results extend the mechanistic links between BRCA1 and transcriptional consequences in response to DNA damage and suggest an important role for RNAPII P-CTD cleavage in BRCA1-mediated cancer suppression.
Resumo:
Negative-strand RNA viruses encode a single RNA-dependent RNA polymerase (RdRp) which transcribes and replicates the genome. The open reading frame encoding the RdRp from a virulent wild-type strain of rinderpest virus (RPV) was inserted into an expression plasmid. Sequences encoding enhanced green fluorescent protein (EGFP) were inserted into a variable hinge of the RdRp. The resulting polymerase was autofluorescent, and its activity in the replication/transcription of a synthetic minigenome was reduced. We investigated the potential of using this approach to rationally attenuate a virus by inserting the DNA sequences encoding the modified RdRp into a full-length anti-genome plasmid from which a virulent virus (rRPV(KO)) can be rescued. A recombinant virus, rRPV(KO)L-RRegfpR, which grew at an indistinguishable rate and to an identical titer as rRPV(KO) in vitro, was rescued. Fluorescently tagged polymerase was visible in large cytoplasmic inclusions and beneath the cell membrane. Subcutaneous injection of 10(4) TCID(50) of the rRPV(KO) parental recombinant virus into cattle leads to severe disease symptoms (leukopenia/diarrhea and pyrexia) and death by 9 days postinfection. Animals infected with rRPV(KO)L-RRegfpR exhibited transient leukopenia and mild pyrexia, and the only noticeable clinical signs were moderate reddening of one eye and a slight ocular-nasal discharge. Viruses that expressed the modified polymerase were isolated from peripheral blood lymphocytes and eye swabs. This demonstrates that a virulent morbillivirus can be attenuated in a single step solely by modulating RdRp activity and that there is not necessarily a correlation between virus growth in vitro and in vivo.