988 resultados para RNA Splice Sites


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Autism is a childhood-onset developmental disorder characterized by deficits in reciprocal social interaction, verbal and non-verbal communication, and dependence on routines and rituals. It belongs to a spectrum of disorders (autism spectrum disorders, ASDs) which share core symptoms but show considerable variation in severity. The whole spectrum affects 0.6-0.7% of children worldwide, inducing a substantial public health burden and causing suffering to the affected families. Despite having a very high heritability, ASDs have shown exceptional genetic heterogeneity, which has complicated the identification of risk variants and left the etiology largely unknown. However, recent studies suggest that rare, family-specific factors contribute significantly to the genetic basis of ASDs. In this study, we investigated the role of DISC1 (Disrupted-in-schizophrenia-1) in ASDs, and identified association with markers and haplotypes previously associated with psychiatric phenotypes. We identified four polymorphic micro-RNA target sites in the 3 UTR of DISC1, and showed that hsa-miR-559 regulates DISC1 expression in vitro in an allele-specific manner. We also analyzed an extended autism pedigree with genealogical roots in Central Finland reaching back to the 17th century. To take advantage of the beneficial characteristics of population isolates to gene mapping and reduced genetic heterogeneity observed in distantly related individuals, we performed a microsatellite-based genome-wide screen for linkage and linkage disequilibrium in this pedigree. We identified a putative autism susceptibility locus on chromosome 19p13.3 and obtained further support for previously reported loci at 1q23 and 15q11-q13. To follow-up these findings, we extended our study sample from the same sub-isolate and initiated a genome-wide analysis of homozygosity and allelic sharing using high-density SNP markers. We identified a small number of haplotypes shared by different subsets of the genealogically connected cases, along with convergent biological pathways from SNP and gene expression data, which highlighted axon guidance molecules in the pathogenesis of ASDs. In conclusion, the results obtained in this thesis show that multiple distinct genetic variants are responsible for the ASD phenotype even within single pedigrees from an isolated population. We suggest that targeted resequencing of the shared haplotypes, linkage regions, and other susceptibility loci is essential to identify the causal variants. We also report a possible micro-RNA mediated regulatory mechanism, which might partially explain the wide-range neurobiological effects of the DISC1 gene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hantaviruses (family Bunyaviridae, genus Hantavirus) are enveloped viruses incorporating a segmented, negative-sense RNA genome. Each hantavirus is carried by its specific host, either a rodent or an insectivore (shrew), in which the infection is asymptomatic and persistent. In humans, hantaviruses cause Hemorrhagic fever with renal syndrome (HFRS) in Eurasia and Hantavirus cardiopulmonary syndrome (HCPS) in the Americas. In Finland, Puumala virus (genus Hantavirus) is the causative agent of NE, a mild form of HFRS. The HFRS-type diseases are often associated with renal failure and proteinuria that might be mechanistically explained by infected kidney tubular cell degeneration in patients. Previously, it has been shown that non-pathogenic hantavirus, Tula virus (TULV), could cause programmed cell death, apoptosis, in cell cultures. This suggested that the infected kidney tubular degeneration could be caused directly by virus replication. In the first paper of this thesis the molecular mechanisms involved in TULV-induced apoptosis was further elucidated. A virus replication-dependent down-regulation of ERK1/2, concomitantly with the induced apoptosis, was identified. In addition, this phenomenon was not restricted to TULV or to non-pathogenic hantaviruses in general since also a pathogenic hantavirus, Seoul virus, could inhibit ERK1/2 activity. Hantaviruses consist of membrane-spanning glycoproteins Gn and Gc, RNA-dependent RNA polymerase (L protein) and nucleocapsid protein N, which encapsidates the viral genome, and thus forms the ribonucleoprotein (RNP). Interaction between the cytoplasmic tails of viral glycoproteins and RNP is assumed to be the only means how viral genetic material is incorporated into infectious virions. In the second paper of this thesis, it was shown by immunoprecipitation that viral glycoproteins and RNP interact in the purified virions. It was further shown that peptides derived from the cytoplasmic tails (CTs) of both Gn and Gc could bind RNP and recombinant N protein. In the fourth paper the cytoplamic tail of Gn but not Gc was shown to interact with genomic RNA. This interaction was probably rather unspecific since binding of Gn-CT with unrelated RNA and even single-stranded DNA were also observed. However, since the RNP consists of both N protein and N protein-encapsidated genomic RNA, it is possible that the viral genome plays a role in packaging of RNPs into virions. On the other hand, the nucleic acid-binding activity of Gn may have importance in the synthesis of viral RNA. Binding sites of Gn-CT with N protein or nucleic acids were also determined by peptide arrays, and they were largely found to overlap. The Gn-CT of hantaviruses contain a conserved zinc finger (ZF) domain with an unknown function. Some viruses need ZFs in entry or post-entry steps of the viral life cycle. Cysteine residues are required for the folding of ZFs by coordinating zinc-ions, and alkylation of these residues can affect virus infectivity. In the third paper, it was shown that purified hantavirions could be inactivated by treatment with cysteine-alkylating reagents, especially N-ethyl maleimide. However, the effect could not be pin-pointed to the ZF of Gn-CT since also other viral proteins reacted with maleimides, and it was, therefore, impossible to exclude the possibility that other cysteines besides those that were essential in the formation of ZF are required for hantavirus infectivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The very common GNB3 c.825C>T polymorphism (rs5443), is present in approximately half of all human chromosomes. Significantly the presence of the GNB3 825T allele has been strongly associated, with predisposition to essential hypertension. Paradoxically the presence of the GNB3 825T allele, in exon 10, introduces a pathogenic alternative RNA splice site into the middle of exon 9. To attempt to correct this pathogenic aberrant splicing, we therefore bioinformatically designed, using a Gene Tools® algorithm, a GNB3 specific, antisense morpholino. It was hoped that this morpholino would behave in vitro as either a potential “ splice blocker and/or exon skipper, to both bind and inhibit/reduce the aberrant splicing of the GNB3, 825T allele. On transfecting a human lymphoblast cell line homozygous for the 825T allele, with this antisense morpholino, we encouragingly observed both a significant reduction (from ~58% to ~5%) in the production of the aberrant smaller GNB3 transcript, and a subsequent increase in the normal GNB3 transcript (from ~42% to ~95%). Our results demonstrate the potential use of a GNB3 specific antisense morpholino, as a pharmacogenetic therapy for essential hypertension.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Germline mutations or large-scale deletions in the coding region and splice sites of STK11/LKB1 do not account for all cases of Peutz-Jeghers syndrome (PJS). It is conceivable that, on the basis of data from other diseases, inherited variation in promoter elements of STK11/LKB1 may cause PJS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to characterize the transcriptome of a balanced polymorphism, under the regulation of a single gene, for phosphate fertilizer responsiveness/arsenate toler- ance in wild grass Holcus lanatus genotypes screened from the same habitat.

De novo transcriptome sequencing, RNAseq (RNA sequencing) and single nucleotide poly- morphism (SNP) calling were conducted on RNA extracted from H.lanatus. Roche 454 sequencing data were assembled into c. 22 000 isotigs, and paired-end Illumina reads for phosphorus-starved (P) and phosphorus-treated (P+) genovars of tolerant (T) and nontoler- ant (N) phenotypes were mapped to this reference transcriptome.

Heatmaps of the gene expression data showed strong clustering of each P+/P treated genovar, as well as clustering by N/T phenotype. Statistical analysis identified 87 isotigs to be significantly differentially expressed between N and T phenotypes and 258 between P+ and P treated plants. SNPs and transcript expression that systematically differed between N and T phenotypes had regulatory function, namely proteases, kinases and ribonuclear RNA- binding protein and transposable elements.

A single gene for arsenate tolerance led to distinct phenotype transcriptomes and SNP pro- files, with large differences in upstream post-translational and post-transcriptional regulatory genes rather than in genes directly involved in P nutrition transport and metabolism per se.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background. About 130 million people are infected with the hepatitis C virus (HCV) worldwide, but effective treatment options are not yet available. One of the most promising targets for antiviral therapy is nonstructural protein 3 (NS3). To identify possible changes in the structure of NS3 associated with virological sustained response or non-response of patients, a model was constructed for each helicase NS3 protein coding sequence. From this, the goal was to verify the interaction between helicases variants and their ligands. Findings. Evidence was found that the NS3 helicase portion of non-responder patients contained substitutions in its ATP and RNA binding sites. K210E substitution can cause an imbalance in the distribution of loads, leading to a decrease in the number of ligations between the essential amino acids required for the hydrolysis of ATP. W501R substitution causes an imbalance in the distribution of loads, leading and forcing the RNA to interact with the amino acid Thr269, but not preventing binding of ribavirin inhibitor. Conclusions. Useful information is provided on the genetic profiling of the HCV genotype 3, specifically the coding region of the NS3 protein, improving our understanding of the viral genome and the regions of its protein catalytic site. © 2010 Rahal et al; licensee BioMed Central Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intron splicing is one of the most important steps involved in the maturation process of a pre-mRNA. Although the sequence profiles around the splice sites have been studied extensively, the levels of sequence identity between the exonic sequences preceding the donor sites and the intronic sequences preceding the acceptor sites has not been examined as thoroughly. In this study we investigated identity patterns between the last 15 nucleotides of the exonic sequence preceding the 5' splice site and the intronic sequence preceding the 3' splice site in a set of human protein-coding genes that do not exhibit intron retention. We found that almost 60% of consecutive exons and introns in human protein-coding genes share at least two identical nucleotides at their 3' ends and, on average, the sequence identity length is 2.47 nucleotides. Based on our findings we conclude that the 3' ends of exons and introns tend to have longer identical sequences within a gene than when being taken from different genes. Our results hold even if the pairs are non-consecutive in the transcription order. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background One of the least common types of alternative splicing is the complete retention of an intron in a mature transcript. Intron retention (IR) is believed to be the result of intron, rather than exon, definition associated with failure of the recognition of weak splice sites flanking short introns. Although studies on individual retained introns have been published, few systematic surveys of large amounts of data have been conducted on the mechanisms that lead to IR. Results TTo understand how sequence features are associated with or control IR, and to produce a generalized model that could reveal previously unknown signals that regulate this type of alternative splicing, we partitioned intron retention events observed in human cDNAs into two groups based on the relative abundance of both isoforms and compared relevant features. We found that a higher frequency of IR in human is associated with individual introns that have weaker splice sites, genes with shorter intron lengths, higher expression levels and lower density of both a set of exon splicing silencers (ESSs) and the intronic splicing enhancer GGG. Both groups of retained introns presented events conserved in mouse, in which the retained introns were also short and presented weaker splice sites. Conclusion Although our results confirmed that weaker splice sites are associated with IR, they showed that this feature alone cannot explain a non-negligible fraction of events. Our analysis suggests that cis-regulatory elements are likely to play a crucial role in regulating IR and also reveals previously unknown features that seem to influence its occurrence. These results highlight the importance of considering the interplay among these features in the regulation of the relative frequency of IR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background About 130 million people are infected with the hepatitis C virus (HCV) worldwide, but effective treatment options are not yet available. One of the most promising targets for antiviral therapy is nonstructural protein 3 (NS3). To identify possible changes in the structure of NS3 associated with virological sustained response or non-response of patients, a model was constructed for each helicase NS3 protein coding sequence. From this, the goal was to verify the interaction between helicases variants and their ligands. Findings Evidence was found that the NS3 helicase portion of non-responder patients contained substitutions in its ATP and RNA binding sites. K210E substitution can cause an imbalance in the distribution of loads, leading to a decrease in the number of ligations between the essential amino acids required for the hydrolysis of ATP. W501R substitution causes an imbalance in the distribution of loads, leading and forcing the RNA to interact with the amino acid Thr269, but not preventing binding of ribavirin inhibitor. Conclusions Useful information is provided on the genetic profiling of the HCV genotype 3, specifically the coding region of the NS3 protein, improving our understanding of the viral genome and the regions of its protein catalytic site.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nuclear antisense properties of a series of tricyclo(tc)-DNA oligonucleotide 9-15mers, targeted against the 3' and 5' splice sites of exon 4 of cyclophilin A (CyPA) pre-mRNA, were evaluated in HeLa cells and compared with those of corresponding LNA-oligonucleotides. While the 9mers showed no significant antisense effect, the 11-15mers induced exon 4 skipping and exon 3+4 double skipping to about an equal extent upon lipofectamine mediated transfection in a sequence and dose dependent manner, as revealed by a RT-PCR assay. The antisense efficacy of the tc-oligonucleotides was found to be superior to that of the LNA-oligonucleotides in all cases by a factor of at least 4-5. A tc-oligonucleotide 15mer completely abolished CyPA mRNA production at 0.2‘M concentration. The antisense effect was confirmed by western blot analysis which revealed a reduction of CyPA protein to 13% of its normal level. Fluorescence microscopic investigations with a fluorescein labeled tc-15mer revealed a strong propensity for homogeneous nuclear localization of this backbone type after lipofectamine mediated transfection, while the corresponding lna 15mer showed a less clear cellular distribution pattern. Transfection without lipid carrier showed no significant internalization of both tc- and LNA-oligonucleotides. The obtained results confirm the power of tricyclo-DNA for nuclear antisense applications. Morover, CyPA may become an interesting therapeutic target due to its important role in the early steps of the viral replication of HIV-1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the largest international study on Glanzmann thrombasthenia (GT), an inherited bleeding disorder where defects of the ITGA2B and ITGB3 genes cause quantitative or qualitative defects of the αIIbβ3 integrin, a key mediator of platelet aggregation. Sequencing of the coding regions and splice sites of both genes in members of 76 affected families identified 78 genetic variants (55 novel) suspected to cause GT. Four large deletions or duplications were found by quantitative real-time PCR. Families with mutations in either gene were indistinguishable in terms of bleeding severity that varied even among siblings. Families were grouped into type I and the rarer type II or variant forms with residual αIIbβ3 expression. Variant forms helped identify genes encoding proteins mediating integrin activation. Splicing defects and stop codons were common for both ITGA2B and ITGB3 and essentially led to a reduced or absent αIIbβ3 expression; included was a heterozygous c.1440-13_c.1440-1del in intron 14 of ITGA2B causing exon skipping in 7 unrelated families. Molecular modeling revealed how many missense mutations induced subtle changes in αIIb and β3 domain structure across both subunits thereby interfering with integrin maturation and/or function. Our study extends knowledge of Glanzmann thrombasthenia and the pathophysiology of an integrin. This article is protected by copyright. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human immunodeficiency virus 1 (HIV-1) multiplication depends on a cellular protein, cyclophilin A (CyPA), that gets integrated into viral particles. Because CyPA is not required for cell viability, we attempted to block its synthesis in order to inhibit HIV-1 replication. For this purpose, we used antisense U7 small nuclear RNAs (snRNAs) that disturb CyPA pre-mRNA splicing and short interfering RNAs (siRNAs) that target CyPA mRNA for degradation. With dual-specificity U7 snRNAs targeting the 3' and 5' splice sites of CyPA exons 3 or 4, we obtained an efficient skipping of these exons and a strong reduction of CyPA protein. Furthermore, short interfering RNAs targeting two segments of the CyPA coding region strongly reduced CyPA mRNA and protein levels. Upon lentiviral vector-mediated transduction, prolonged antisense effects were obtained for both types of antisense RNAs in the human T-cell line CEM-SS. These transduced CEM-SS cells showed a delayed, and for the siRNAs also reduced, HIV-1 multiplication. Since the two types of antisense RNAs function by different mechanisms, combining the two approaches may result in a synergistic effect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Pinschers and other dogs with coat color dilution show a characteristic pigmentation phenotype. The fur colors are a lighter shade, e.g. silvery grey (blue) instead of black and a sandy color (Isabella fawn) instead of red or brown. In some dogs the coat color dilution is sometimes accompanied by hair loss and recurrent skin inflammation, the so called color dilution alopecia (CDA) or black hair follicular dysplasia (BHFD). In humans and mice a comparable pigmentation phenotype without any documented hair loss is caused by mutations within the melanophilin gene (MLPH). RESULTS We sequenced the canine MLPH gene and performed a mutation analysis of the MLPH exons in 6 Doberman Pinschers and 5 German Pinschers. A total of 48 sequence variations was identified within and between the breeds. Three families of dogs showed co-segregation for at least one polymorphism in an MLPH exon and the dilute phenotype. No single polymorphism was identified in the coding sequences or at splice sites that is likely to be causative for the dilute phenotype of all dogs examined. In 18 German Pinschers a mutation in exon 7 (R199H) was consistently associated with the dilute phenotype. However, as this mutation was present in homozygous state in four dogs of other breeds with wildtype pigmentation, it seems unlikely that this mutation is truly causative for coat color dilution. In Doberman Pinschers as well as in Large Munsterlanders with BHFD, a set of single nucleotide polymorphisms (SNPs) around exon 2 was identified that show a highly significant association to the dilute phenotype. CONCLUSION This study provides evidence that coat color dilution is caused by one or more mutations within or near the MLPH gene in several dog breeds. The data on polymorphisms that are strongly associated with the dilute phenotype will allow the genetic testing of Pinschers to facilitate the breeding of dogs with defined coat colors and to select against Large Munsterlanders carrying BHFD.