905 resultados para RICE GRAIN
Resumo:
Hybrid vigour may help overcome the negative effects of climate change in rice. A popular rice hybrid (IR75217H), a heat-tolerant check (N22), and a mega-variety (IR64) were tested for tolerance of seed-set and grain quality to high-temperature stress at anthesis at ambient and elevated [CO2]. Under an ambient air temperature of 29 °C (tissue temperature 28.3 °C), elevated [CO2] increased vegetative and reproductive growth, including seed yield in all three genotypes. Seed-set was reduced by high temperature in all three genotypes, with the hybrid and IR64 equally affected and twice as sensitive as the tolerant cultivar N22. No interaction occurred between temperature and [CO2] for seed-set. The hybrid had significantly more anthesed spikelets at all temperatures than IR64 and at 29 °C this resulted in a large yield advantage. At 35 °C (tissue temperature 32.9 °C) the hybrid had a higher seed yield than IR64 due to the higher spikelet number, but at 38 °C (tissue temperature 34–35 °C) there was no yield advantage. Grain gel consistency in the hybrid and IR64 was reduced by high temperatures only at elevated [CO2], while the percentage of broken grains increased from 10% at 29 °C to 35% at 38 °C in the hybrid. It is concluded that seed-set of hybrids is susceptible to short episodes of high temperature during anthesis, but that at intermediate tissue temperatures of 32.9 °C higher spikelet number (yield potential) of the hybrid can compensate to some extent. If the heat tolerance from N22 or other tolerant donors could be transferred into hybrids, yield could be maintained under the higher temperatures predicted with climate change.
Resumo:
Climate change is increasing night temperature (NT) more than day temperature (DT) in rice-growing areas. Effects of combinations of NT (24-35°C) from microsporogenesis to anthesis at one or more DT (30 or 35°C) at anthesis on rice spikelet fertility, temperature within spikelets, flowering pattern, grain weight per panicle, amylose content and gel consistency were investigated in contrasting rice cultivars under controlled environments. Cultivars differed in spikelet fertility response to high NT, with higher fertility associated with cooler spikelets (P < 0.01). Flowering dynamics were altered by high NT and a novel high temperature tolerance complementary mechanism, shorter flower open duration in cv. N22, was identified. High NT reduced spikelet fertility, grain weight per panicle, amylose content and gel consistency, whereas high DT reduced only gel consistency. Night temperature >27°C was estimated to reduce grain weight. Generally, high NT was more damaging to grain weight and selected grain quality traits than high DT, with little or no interaction between them. The critical tolerance and escape traits identified, i.e. spikelet cooling, relatively high spikelet fertility, earlier start and peak time of anthesis and shorter spikelet anthesis duration can aid plant breeding programs targeting resilience in warmer climates.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The plant PTR/NRT1 (peptide transporter/nitrate transporter 1) gene family comprises di/tripeptide and low-affinity nitrate transporters; some members also recognize other substrates such as carboxylates, phytohormones (auxin and abscisic acid), or defence compounds (glucosinolates). Little is known about the members of this gene family in rice (Oryza sativa L.). Here, we report the influence of altered OsPTR9 expression on nitrogen utilization efficiency, growth, and grain yield. OsPTR9 expression is regulated by exogenous nitrogen and by the day-night cycle. Elevated expression of OsPTR9 in transgenic rice plants resulted in enhanced ammonium uptake, promotion of lateral root formation and increased grain yield. On the other hand, down-regulation of OsPTR9 in a T-DNA insertion line (osptr9) and in OsPTR9-RNAi rice plants had the opposite effect. These results suggest that OsPTR9 might hold potential for improving nitrogen utilization efficiency and grain yield in rice breeding.
Resumo:
The mean grain yield of 81 direct seeded (DS) and 91 transplanted (TP) environments that were conducted as part of 3 ACIAR projects over 11 years, from 1992-2002, in Laos, Thailand and Cambodia were examined. The average yield of TP rice was 6% greater than DS rice. A subset of 27 pairs of DS and TP environments was examined and results indicated a significant positive correlation between the DS and TP establishment methods for mean grain yield with only a 3% difference in overall performance. The performance of 3 genotypes in 3 locations in Laos in 1996 was also examined. Results indicated a highly significant positive correlation between the performance of genotypes in DS and TP experiments in which TP rice had a 30% yield advantage over DS rice. This particular experiment highlights the need for good management practices when DS establishment methods are utilised. Results of this paper indicate that DS and TP rice will produce a similar yield for a given environment provided that they are grown utilising good management practices.
Resumo:
This article is protected by copyright. All rights reserved.
Resumo:
The aim of this study was to determine the effect of pearl millet intercropped with other cover crops on mineral forms of N and urease activity in soil, nitrate reductase activity in the leaves of the follow-up rice crop, as well as the yield components of this rice crop. The experiment was performed in the year 2012/2013 at two locations of the Brazilian Cerrado.
Resumo:
Brewer`s spent grain components (cellulose, hemicellulose and lignin) were fractionated in a two-step chemical pretreatment process using dilute sulfuric acid and sodium hydroxide solutions. The cellulose pulp produced was hydrolyzed with a cellulolytic complex, Celluclast 1.5 L, at 45 degrees C to convert the cellulose into glucose. Several conditions were examined: agitation speed (100, 150 and 200 rpm), enzyme loading (5, 25 and 45 FPU/g substrate), and substrate concentration (2, 5 and 8% w/v), according to a 2(3) full factorial design aiming to maximize the glucose yield. The obtained results were interpreted by analysis of variance and response surface methodology. The optimal conditions for enzymatic hydrolysis of brewer`s spent grain were identified as 100 rpm, 45 FPU/g and 2% w/v substrate. Under these conditions, a glucose yield of 93.1% and a cellulose conversion (into glucose and cellobiose) of 99.4% was achieved. The easiness of glucose release from BSG makes this substrate a raw material with great potential to be used in bioconversion processes.
Resumo:
The effects of initial xylose concentration and nutritional supplementation of brewer`s spent grain hydrolysate on xylitol production by Candida guilliermondii were evaluated using experimental design methodology. The hydrolysate containing 55, 75 or 95 g/l xylose, supplemented or not with nutrients (calcium chloride, ammonium sulfate and rice bran extract), was used as fermentation medium. The increase in xylitol yield and productivity was related to the increase of initial xylose concentration, but up to a certain limit. above of which the yeast performance was not improved. The hydrolysate supplementation with nutrients did not interfere with xylose-to-xylitol conversion. By using the statistic tool the best conditions for maximum xylitol production were found. which consisted in using the non-supplemented hydrolysate containing 70 g/l initial xylose concentration. Under these conditions, a xylitol yield of 0.78 g/g and productivity of 0.58 g/(l h) were achieved. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Potassium (K) plays an important role in many physiological and biochemical processes in plants and its adequate use is an important issue for sustainable economic crop production. Soil test-based K fertilizer recommendations are very limited for lowland rice (Oryza sativa L.) grown on Inceptisols. The objective of this study was to calibrate K soil testing for the response of lowland rice (cv. Ipagri 109) to added K. A field experiment was conducted in the farmers` field in the municipality of Lagoa da Confusao, State of Tocantins, central Brazil. The K rates used were 0, 125, 250, 375, 500, and 625 kg K ha-1 applied as broadcast and incorporated during sowing of the first rice crop. Rice responded significantly to K fertilization during 2 years of experimentation. Maximum grain yield of about 6,000 kg ha-1 was obtained with 57 mg K kg-1 soil in the first year and with 30 mg K kg-1 in the second year. This indicated that at low levels of K in the soil, nonexchangeable K was available for plant growth. Potassium use efficiency designated as agronomic efficiency (kg grain produced/kg K applied) decreased significantly in a quadratic fashion with increasing K level in the soil. Agronomic efficiency had a significantly linear association with grain yield. Hence, improving agronomic efficiency with management practices can improve rice yield.
Resumo:
Potassium (K) is an essential nutrient for higher plants. Information on K uptake and use efficiency of upland rice under Brazilian conditions is limited. A greenhouse experiment was conducted with the objective to evaluate influence of K on yield, K uptake, and use efficiency of six upland rice genotypes grown on Brazilian Oxisol. The K rate used was zero (natural soil level) and 200 mg K kg-1 of soil. Shoot dry weight and grain yield were significantly influenced by K level and genotype treatments. However, K x genotype interactions were not significant, indicating similar responses of genotypes at two K levels for shoot dry weight and grain yield. Genotypes produced grain yield in the order of BRS Primavera BRA 01596 BRSMG Curinga BRS 032033 BRS Bonanca BRA 02582. Potassium concentration in shoot was about sixfold greater compared to grain, across two K levels and six genotypes. However, K utilization efficiency ratio (KUER) (mg shoot or grain yield / mg K uptake in shoot or root) was about 6.5 times greater in grain compared to shoot, across two K level and six genotypes. Potassium uptake in shoot and grain and KUER were significantly and positively associated with grain yield. Soil calcium (Ca), K, base saturation, acidity saturation, Ca saturation, K saturation, Ca/K ratio, and magnesium (Mg)/K ratio were significantly influenced by K application rate.
Resumo:
A field experiment compared two rice (Oryza sativa L.) cropping systems: paddy or raised beds with continuous furrow irrigation; and trialled four cultivars: Starbonnet, Lemont, Amaroo and Ceysvoni, and one test line YRL39; that may vary in adaptation to growth on raised beds. The grain yield of rice ranged from 740 to 1250 g/m(2) and was slightly greater in paddy than on raised beds. Although there were early growth responses to fertilizer nitrogen on raised beds, the crop nitrogen content at maturity mostly exceeded 20 g/m(2) in both systems, so nitrogen was unlikely to have limited yield. Ceysvoni yielded best in both systems, a result of good post-anthesis growth and larger grain size, although its whole-grain mill-out percentage was poor relative to the other cultivars. Starbonnet and Lemont yielded poorly on raised beds, associated with too few tillers and too much leaf area. When grown on raised beds all cultivars experienced a delay in anthesis resulting in more tillers, leaf area and dry weight at anthesis, and probably a greater yield potential. The growth of rice after anthesis, however, was similar on raised beds and in paddy, so reductions in harvest index and grain size on raised beds were recorded. The data indicated that water supply was not a major limitation to rice growth on raised beds, but slower crop development was an issue that would affect the use of raised beds in a cropping system, especially in rice-growing areas where temperatures are too cool for optimal crop development. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A sample of recombinant inbred lines (RILs) was derived from a bi-parental cross between Lemont and BK88-BR6, which contrasted in maintenance of leaf water potential (LWP) and expression of osmotic adjustment (OA). Genotypic variation for LWP and OA, and their associations with yield determination under water deficit, was studied in a series of five field experiments. Genotypic variation in the maintenance of high LWP was consistent across water deficit experiments. In the determination of genotypic variation in the maintenance of LWP, rate of water deficit was not an important factor influencing ranking, but degree of water deficit, and phenological development stage were important, particularly around heading. Genotypic variation in expression of OA was also observed under water deficits during both vegetative and flowering stages but ranking was inconsistent across experiments. This was in part because of large experimental errors associated with its measurement, but also because the expression of OA was associated with extent of decline of LWP. The relationship between OA and LWP was demonstrated when data were combined across experiments for vegetative and flowering stages. Under water-limited conditions around flowering, grain yield reduction was mainly due to a increased spikelet sterility. Variation in OA was not related to grain yield nor yield components. There were however, negative phenotypic and genetic correlations between LWP and percentage spikelet sterility measured at flowering stage on panicles at the same development stage during a water deficit treatment. This suggests that traits contributing to the maintenance of high LWP minimized the effects of water deficit on spikelet sterility and consequently grain yield. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Drought frequently reduces grain yield of rainfed lowland rice. A series of experiments were conducted in drought-prone northeast Thailand to study the magnitude and consistency of yield responses of diverse, rainfed lowland rice genotypes to drought stress environments and to examine ways to identify genotypes that confer drought resistance. One hundred and twenty-eight genotypes were grown under non-stress and four different types of drought stress conditions. The relationship of genotypic variation in yield under drought conditions to genetic yield potential, flowering time and flowering delay, and to a drought response index (DRI) that removed the effect of potential yield and flowering time on yield under stress was examined. Drought stress that developed prior to flowering generally delayed the time of flowering of genotypes, and the delay in flowering was negatively associated with grain yield, fertile panicle percentage and filled grain percentage. Genotypes with a longer delay in flowering time had extracted more water during the early drought period, and as a consequence, had higher water deficits. They were consistently associated with a larger yield reduction under drought and in one experiment with a smaller DRI. Genotypes, however, responded differently to the different drought stress conditions and there was no consistency in the DRI estimates for the different genotypes across the drought stress experiments. The results indicate that with the use of irrigated-control and drought test environments, genotypes with drought resistance can be identified by using DRI or delay in flowering. However, selections will differ depending on the type of drought condition. The inconsistency of the estimates in DRI and flowering delay across different drought conditions reflects the nature of the large genotype-by-environment interactions observed for grain yield under various types of drought in rainfed lowland conditions. (C), 2002 Elsevier Science B.V. All rights reserved.