913 resultados para RANDOM KEYS
Resumo:
Feature selection is one of important and frequently used techniques in data preprocessing. It can improve the efficiency and the effectiveness of data mining by reducing the dimensions of feature space and removing the irrelevant and redundant information. Feature selection can be viewed as a global optimization problem of finding a minimum set of M relevant features that describes the dataset as well as the original N attributes. In this paper, we apply the adaptive partitioned random search strategy into our feature selection algorithm. Under this search strategy, the partition structure and evaluation function is proposed for feature selection problem. This algorithm ensures the global optimal solution in theory and avoids complete randomness in search direction. The good property of our algorithm is shown through the theoretical analysis.
Resumo:
Most cellular solids are random materials, while practically all theoretical structure-property results are for periodic models. To be able to generate theoretical results for random models, the finite element method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We have computed the density (rho) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian random fields. The effect of partially open cells is also considered. The results, which are best described by a power law E infinity rho (n) (1<n<2), show the influence of randomness and isotropy on the properties of closed-cell cellular materials, and are found to be in good agreement with experimental data. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A mixture model incorporating long-term survivors has been adopted in the field of biostatistics where some individuals may never experience the failure event under study. The surviving fractions may be considered as cured. In most applications, the survival times are assumed to be independent. However, when the survival data are obtained from a multi-centre clinical trial, it is conceived that the environ mental conditions and facilities shared within clinic affects the proportion cured as well as the failure risk for the uncured individuals. It necessitates a long-term survivor mixture model with random effects. In this paper, the long-term survivor mixture model is extended for the analysis of multivariate failure time data using the generalized linear mixed model (GLMM) approach. The proposed model is applied to analyse a numerical data set from a multi-centre clinical trial of carcinoma as an illustration. Some simulation experiments are performed to assess the applicability of the model based on the average biases of the estimates formed. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
A finite-element method is used to study the elastic properties of random three-dimensional porous materials with highly interconnected pores. We show that Young's modulus, E, is practically independent of Poisson's ratio of the solid phase, nu(s), over the entire solid fraction range, and Poisson's ratio, nu, becomes independent of nu(s) as the percolation threshold is approached. We represent this behaviour of nu in a flow diagram. This interesting but approximate behaviour is very similar to the exactly known behaviour in two-dimensional porous materials. In addition, the behaviour of nu versus nu(s) appears to imply that information in the dilute porosity limit can affect behaviour in the percolation threshold limit. We summarize the finite-element results in terms of simple structure-property relations, instead of tables of data, to make it easier to apply the computational results. Without using accurate numerical computations, one is limited to various effective medium theories and rigorous approximations like bounds and expansions. The accuracy of these equations is unknown for general porous media. To verify a particular theory it is important to check that it predicts both isotropic elastic moduli, i.e. prediction of Young's modulus alone is necessary but not sufficient. The subtleties of Poisson's ratio behaviour actually provide a very effective method for showing differences between the theories and demonstrating their ranges of validity. We find that for moderate- to high-porosity materials, none of the analytical theories is accurate and, at present, numerical techniques must be relied upon.
Resumo:
Recently, several groups have investigated quantum analogues of random walk algorithms, both on a line and on a circle. It has been found that the quantum versions have markedly different features to the classical versions. Namely, the variance on the line, and the mixing time on the circle increase quadratically faster in the quantum versions as compared to the classical versions. Here, we propose a scheme to implement the quantum random walk on a line and on a circle in an ion trap quantum computer. With current ion trap technology, the number of steps that could be experimentally implemented will be relatively small. However, we show how the enhanced features of these walks could be observed experimentally. In the limit of strong decoherence, the quantum random walk tends to the classical random walk. By measuring the degree to which the walk remains quantum, '' this algorithm could serve as an important benchmarking protocol for ion trap quantum computers.
Resumo:
This paper presents a new approach to the LU decomposition method for the simulation of stationary and ergodic random fields. The approach overcomes the size limitations of LU and is suitable for any size simulation. The proposed approach can facilitate fast updating of generated realizations with new data, when appropriate, without repeating the full simulation process. Based on a novel column partitioning of the L matrix, expressed in terms of successive conditional covariance matrices, the approach presented here demonstrates that LU simulation is equivalent to the successive solution of kriging residual estimates plus random terms. Consequently, it can be used for the LU decomposition of matrices of any size. The simulation approach is termed conditional simulation by successive residuals as at each step, a small set (group) of random variables is simulated with a LU decomposition of a matrix of updated conditional covariance of residuals. The simulated group is then used to estimate residuals without the need to solve large systems of equations.
Resumo:
Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.
Resumo:
Epidemiological studies have shown the effect of diet on the incidence of chronic diseases; however, proper planning, designing, and statistical modeling are necessary to obtain precise and accurate food consumption data. Evaluation methods used for short-term assessment of food consumption of a population, such as tracking of food intake over 24h or food diaries, can be affected by random errors or biases inherent to the method. Statistical modeling is used to handle random errors, whereas proper designing and sampling are essential for controlling biases. The present study aimed to analyze potential biases and random errors and determine how they affect the results. We also aimed to identify ways to prevent them and/or to use statistical approaches in epidemiological studies involving dietary assessments.
Resumo:
Applied Mathematical Modelling, Vol.33
Resumo:
The phlebotomine sand fly Lutzomyia longipalpis has been incriminated as a vector of American visceral leishmaniasis, caused by Leishmania chagasi. However, some evidence has been accumulated suggesting that it may exist in nature not as a single but as a species complex. Our goal was to compare four laboratory reference populations of L. longipalpis from distinct geographic regions at the molecular level by RAPD-PCR. We screened genomic DNA for polymorphic sites by PCR amplification with decamer single primers of arbitrary nucleotide sequences. One primer distinguished one population (Marajó Island, Pará State, Brazil) from the other three (Lapinha Cave, Minas Gerais State, Brazil; Melgar, Tolima Department, Colombia and Liberia, Guanacaste Province, Costa Rica). The population-specific and the conserved RAPD-PCR amplified fragments were cloned and shown to differ only in number of internal repeats.
Resumo:
In the streets of Vitória, in the State of Espírito Santo, Brazil, are large number of stray dogs, many of which are infected with Toxocara canis, suggesting a high risk for human infection. In order to investigate the prevalence of Toxocara infection in children in Espírito Santo we studied the prevalence of anti-Toxocara antibodies in 100 random inpatients over one year of age, at the Children's Hospital N.S. da Glória, the reference children's hospital for the State.All the sera were collected during the period between October 1996 and January 1997. The mean age was 6.6±4.1 yrs. (1 to 14 yrs., median 6yrs.) and there were patients from all of the different wards of the hospital. Sixty-eigth patients came from the metropolitan area of Vitória and the other 32 from 17 other municipalities. The anti-Toxocara antibodies were investigated by ELISA-IgG using a secretory-excretory antigen obtained from second stage larvae. All sera were adsorbed with Ascaris suum antigen before the test. Thirty-nine sera (39%) were positive, predominantly from boys, but the gender difference was not statistically significant (boys:25/56 or 44.6%; girls:14/44 or 31.8%; p=0.311). The prevalence of positive sera was higher, but not statistically significant, in children from the urban periphery of metropolitan Vitória (formed by the cities of Vitória, Cariacica, Vila Velha, Serra and Viana) than in children from 17 other municipalities (44.1% and 28.1% respectively, p=0.190). Although the samples studied do not represent all children living in the State of Espírito Santo, since the Children's Hospital N.S. da Glória admits only patients from the state health system, it is probable that these results indicate a high frequency of Toxocara infection in children living in Espírito Santo. Further studies of population samples are necessary to ascertain the prevalence of Toxocara infection in our country.