127 resultados para RADIOPHARMACEUTICALS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optimization of the extremity dosimetry of medical staff in nuclear medicine was the aim of the Work Package 4 (WP4) of the ORAMED project, a Collaborative Project (2008-2011) supported by the European Commission within its 7th Framework Programme. Hand doses and dose distributions across the hands of medical staff working in nuclear medicine departments were evaluated through an extensive measurement program involving 32 hospitals in Europe and 139 monitored workers. The study included the most frequently used radionuclides, (99m)Tc- and (18)F-labelled radiopharmaceuticals for diagnostic and (90)Y-labelled Zevalin (R) and DOTATOC for therapy. Furthermore, Monte Carlo simulations were performed in different predefined scenarios to evaluate separately the efficacy of different radiation protection measures by comparing hand dose distributions according to various parameters. The present work gives recommendations based on results obtained with both measurements and simulations. This results in nine practical recommendations regarding the positioning of the dosemeters for an appropriate skin dose monitoring and the best protection means to reduce the personnel exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In locally advanced cervical cancer, (18)F-fluorodeoxyglucose (FDG) positron emission tomography - computed tomography (PET/CT) has become important in the initial evaluation of disease extent. It is superior to other imaging modalities for lymph node status and distant metastasis. PET-defined cervical tumor volume predicts progression-free and overall survival. Higher FDG uptake in both primary and regional lymph nodes is strongly predictive of worse outcome. FDG-PET is useful for assessing treatment response 3 months after completing concurrent chemo-radiotherapy (CRT) and predicting long-term survival, and in suspected disease recurrence. In the era of image-guided adaptive radiotherapy, accurately defining disease areas is critical to avoid irradiating normal tissue. Based on additional information provided by FDG-PET, radiation treatment volumes can be modified and higher doses to FDG-positive lymph nodes safely delivered. FDG-PET/CT has been used for image-guided brachytherapy of FDG-avid tumor volume, while respecting low doses to bladder and rectum. Despite survival improvements due to CRT in cervical cancer, disease recurrences continue to be a major problem. Biological rationale exists for combining novel non-cytotoxic agents with CRT, and drugs targeting specific molecular pathways are under clinical development. The integration of these targeted therapies in clinical trials, and the need for accurate predictors of radio-curability is essential. New molecular imaging tracers may help identifying more aggressive tumors. (64)Cu-labeled diacetyl-di(N(4)-methylthiosemicarbazone) is taken up by hypoxic tissues, which may be valuable for prognostication and radiation treatment planning. PET/CT imaging with novel radiopharmaceuticals could further impact cervical cancer treatment as surrogate markers of drug activity at the tumor microenvironment level. The present article reviews the current and emerging role of PET/CT in the management of cervical cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[(11)C]PBR28 binds the 18-kDa Translocator Protein (TSPO) and is used in positron emission tomography (PET) to detect microglial activation. However, quantitative interpretations of signal are confounded by large interindividual variability in binding affinity, which displays a trimodal distribution compatible with a codominant genetic trait. Here, we tested directly for an underlying genetic mechanism to explain this. Binding affinity of PBR28 was measured in platelets isolated from 41 human subjects and tested for association with polymorphisms in TSPO and genes encoding other proteins in the TSPO complex. Complete agreement was observed between the TSPO Ala147Thr genotype and PBR28 binding affinity phenotype (P value=3.1 x 10(-13)). The TSPO Ala147Thr polymorphism predicts PBR28 binding affinity in human platelets. As all second-generation TSPO PET radioligands tested hitherto display a trimodal distribution in binding affinity analogous to PBR28, testing for this polymorphism may allow quantitative interpretation of TSPO PET studies with these radioligands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

90Y-labelled radiopharmaceuticals offer promising prospects for radionuclide therapies of tumours, e.g. radioimmunotherapies (RIT), (EANM, 2007), peptide receptor radiotherapies (PRRT), (Otte et al., 1998), and selective internal radiotherapies (SIRT), (Salem and Thurston, 2006). 90Y, an almost pure high-energy beta radiation emitter (Eβ,max = 2.28 MeV), is a favourable radionuclide for therapeutic purposes. However, when preparing and performing these therapies, high activities of 90Y (>1 GBq) are to be manipulated and technicians, physicians and nurses may receive high skin exposures to the hands. If radiation protection standards are low, the exposure of staff can exceed the annual skin dose limit of 500 mSv. Within a particular work package (WP4) of the ORAMED project, comprehensive measurements in nuclear medicine departments of several hospitals in 6 European countries were carried out. The study focussed on 90Y-labelled substances such as Zevalin® and DOTATOC to achieve a representative database on staff exposure. This paper summarises the most important results and conclusions for individual monitoring of skin exposure of staff.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Pleural effusion is common in cancer patients and to determine its malignant origin is of huge clinical significance. PET/CT with 18F-FDG is of diagnostic value in staging and follow-up, but its ability to differentiate between malignant and benign effusions is not precisely known. Patients, methods: We examined 50 PET/CT from 47 patients (29 men, 18 women, 60±16 years) with pleural effusion and known cancer (24 NSCLC, 7 lymphomas, 5 breasts, 4 GIST, 3 mesotheliomas, 2 head and neck, 2 malignant teratoma, 1 colorectal, 1 oesophageal, 1 melanoma) for FDG uptake in the effusions using SUVmax. This was correlated to cytopathology performed after a median of 21 days (interquartile range -3 to 23), which included pH, relative distribution (macrophages, neutrophils, eosinophils, basophils, lymphocytes, plasmocytes), and absolute cell count. Results: Malignant cells were found in 17 effusions (34%) (6 NSCLC, 5 lymphomas, 2 breasts, 2 mesotheliomas, 2 malignant teratomas). SUV in malignant effusions were higher than in benign ones [3.7 (95%CI 1.8-5.6) vs. 1.7 g/ml (1.5-1.9), p = 0.001], with a correlation between malignant effusion and SUV (Spearman coefficient r = 0.50, p = 0.001), but not with other cytopathological or radiological parameters (ROC area 0.83±0.06). Using a 2.2-mg/l SUV threshold, 12 PET/CT studies were positive and 38 negative with sensitivity, specificity, positive and negative predictive values of 53%, 91%, 75% and 79%, respectively. For NSCLC only (n = 24), ROC area was 0.95±0.04, 7 studies were positive and 17 negative with a sensitivity, specificity, positive and negative predictive values of 83%, 89%, 71 and 94%, respectively. Conclusion: PET/CT may help to differentiate the malignant or benign origin of a pleural effusion with a high specificity in patients with known cancer, in particular NSCLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preoperative imaging for resection of chest wall malignancies is generally performed by computed tomography (CT). We evaluated the role of (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in planning full-thickness chest wall resections for malignancies. We retrospectively included 18 consecutive patients operated from 2004 to 2006 at our institution. Tumor extent was measured by CT and PET, using the two largest perpendicular tumor extensions in the chest wall plane to compute the tumor surface assuming an elliptical shape. Imaging measurements were compared to histopathology assessment of tumor borders. CT assessment consistently overestimated the tumor size as compared to PET (+64% vs. +1%, P<0.001). Moreover, PET was significantly better than CT at defining the size of lesions >24 cm(2) corresponding to a mean diameter >5.5 cm or an ellipse of >4 cm x 7.6 cm (positive predictive value 80% vs. 44% and specificity 93% vs. 64%, respectively). Metabolic PET imaging was superior to CT for defining the extent of chest wall tumors, particularly for tumors with a diameter >5.5 cm. PET can complement CT in planning full-thickness chest wall resection for malignancies, but its true value remains to be determined in larger, prospective studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A right heart metastasis of a small-cell lung cancer was found on the whole-body F-fluoro-deoxy-glucose positron emission tomography/computed tomography (F-FDG-PET/CT) of a 69-year-old smoker investigated for a right pulmonary mass discovered on chest radiography after a fracture of the right humerus. The PET scan showed an increased FDG uptake by the mass in the right lung and an intense, atypical focal activity of the right ventricle strongly suggestive of a neoplastic process. CT-guided lung biopsy revealed a small-cell lung cancer and myocardial biopsy confirmed the presence of a cardiac metastasis. The patient was treated with six cycles of chemotherapy followed by radiation therapy, which included the heart lesion. At follow-up PET/CT 2 months after the end of treatment, the abnormal cardiac uptake had disappeared, whereas increased FDG uptake persisted in the pulmonary residual mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Use of radiolabeled nucleotides for tumor imaging is hampered by rapid in vivo degradation and low DNA-incorporation rates. We evaluated whether blocking of thymidine (dThd) synthesis by 5-fluoro-2'-deoxyuridine (FdUrd) could improve scintigraphy with radio-dThd analogues, such as 5-iodo-2'-deoxyuridine (IdUrd). We first show in vitro that coincubation with FdUrd substantially increased incorporation of [125I]IdUrd and [3H]dThd in the three tested human glioblastoma lines. Flow cytometry analysis showed that a short coincubation with FdUrd (1 h) produces a signal increase per labeled cell. We then measured biodistribution 24 h after i.v. injection of [125I]IdUrd in nude mice s.c. xenografted with the three glioblastoma lines. Compared with animals given [125I]IdUrd alone, i.v. preadministration for 1 h of 10 mg/kg FdUrd increased the uptake of [125I]IdUrd in the three tumors 4.8-6.8-fold. Compatible with previous reports, there were no side effects in mice observed for 2 months after receiving such a treatment. The tumor uptake of [125I]IdUrd was increased < or =13.6-fold when FdUrd preadministration was stepwise reduced to 1.1 mg/kg. Uptake increases remained lower (between 1.7- and 5.8-fold) in normal proliferating tissues (i.e., bone marrow, spleen, and intestine) and negligible in quiescent tissues. DNA extraction showed that 72-80% of radioactivity in tumor and intestine was bound to DNA. Scintigraphy of xenografted mice was performed at different times after i.v. injection of 3.7 MBq [125I]IdUrd. Tumor detection was significantly improved after FdUrd preadministration while still equivocal after 24 h in mice given [125I]IdUrd alone. Furthermore, background activity could be greatly reduced by p.o. administration of KClO4 in addition to potassium iodide. We conclude that FdUrd preadministration may improve positron or single photon emission tomography with cell division tracers, such as radio-IdUrd and possibly other dThd analogues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arginine-glycine-aspartic acid (RGD)-containing peptides have been traditionally used as PET probes to noninvasively image angiogenesis, but recently, small selective molecules for α5 β1 integrin receptor have been developed with promising results. Sixty-one antagonists were screened, and tert-butyl (S)-3-(2-((3R,5S)-1-(3-(1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)propanoyl)-5-((pyridin-2-ylamino)methyl)pyrrolidin-3-yloxy)acetamido)-2-(2,4,6-trimethylbenzamido)propanoate (FPMt) was selected for the development of a PET tracer to image the expression of α5 β1 integrin receptors. An alkynyl precursor (PMt) was initially synthesized in six steps, and its radiolabeling was performed according to the azide-alkyne copper(II)-catalyzed Huisgen's cycloaddition by using 1-azido-2-[(18)F]fluoroethane ([(18)F]12). Different reaction conditions between PMt and [(18)F]12 were investigated, but all of them afforded [(18)F]FPMt in 15 min with similar radiochemical yields (80-83%, decay corrected). Overall, the final radiopharmaceutical ([(18)F]FPMt) was obtained after a synthesis time of 60-70 min in 42-44% decay-corrected radiochemical yield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: To compare morphological gross tumor volumes (GTVs), defined as pre- and postoperative gadolinium enhancement on T1-weighted magnetic resonance imaging to biological tumor volumes (BTVs), defined by the uptake of (18)F fluoroethyltyrosine (FET) for the radiotherapy planning of high-grade glioma, using a dedicated positron emission tomography (PET)-CT scanner equipped with three triangulation lasers for patient positioning. METHODS: Nineteen patients with malignant glioma were included into a prospective protocol using FET PET-CT for radiotherapy planning. To be eligible, patients had to present with residual disease after surgery. Planning was performed using the clinical target volume (CTV = GTV union or logical sum BTV) and planning target volume (PTV = CTV + 20 mm). First, the interrater reliability for BTV delineation was assessed among three observers. Second, the BTV and GTV were quantified and compared. Finally, the geometrical relationships between GTV and BTV were assessed. RESULTS: Interrater agreement for BTV delineation was excellent (intraclass correlation coefficient 0.9). Although, BTVs and GTVs were not significantly different (p = 0.9), CTVs (mean 57.8 +/- 30.4 cm(3)) were significantly larger than BTVs (mean 42.1 +/- 24.4 cm(3); p < 0.01) or GTVs (mean 38.7 +/- 25.7 cm(3); p < 0.01). In 13 (68%) and 6 (32%) of 19 patients, FET uptake extended >or= 10 and 20 mm from the margin of the gadolinium enhancement. CONCLUSION: Using FET, the interrater reliability had excellent agreement for BTV delineation. With FET PET-CT planning, the size and geometrical location of GTVs and BTVs differed in a majority of patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Positron emission computed tomography (PET) is a functional, noninvasive method for imaging regional metabolic processes that is nowadays most often combined to morphological imaging with computed tomography (CT). Its use is based on the well-founded assumption that metabolic changes occur earlier in tumors than morphologic changes, adding another dimension to imaging. This article will review the established and investigational indications and radiopharmaceuticals for PET/CT imaging for prostate cancer, bladder cancer and testicular cancer, before presenting upcoming applications in radiation therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Acute pyelonephritis is a common condition in children, and can lead to renal scarring. The aim of this study was to analyze the progression of renal scarring with time and its impact on renal growth. MATERIALS AND METHODS: A total of 50 children who had renal scarring on dimercapto-succinic acid scan 6 months after acute pyelonephritis underwent a repeat scan 3 years later. Lesion changes were evaluated by 3 blinded observers, and were classified as no change, partial resolution or complete disappearance. Renal size at time of acute pyelonephritis and after 3 years was obtained by ultrasound, and renal growth was assessed comparing z-score for age between the 2 measures. Robust linear regression was used to identify determinants of renal growth. RESULTS: At 6 months after acute pyelonephritis 88 scars were observed in 100 renal units. No change was observed in 27%, partial resolution in 63% and complete disappearance in 9% of lesions. Overall, 72% of lesions improved. Increased number of scars was associated with high grade vesicoureteral reflux (p = 0.02). Multivariate analysis showed that the number of scars was the most important parameter leading to decreased renal growth (CI -1.05 to -0.35, p <0.001), and with 3 or more scars this finding was highly significant on univariate analysis (-1.59, CI -2.10 to -1.09, p <0.0001). CONCLUSIONS: Even 6 months after acute pyelonephritis 72% of dimercapto-succinic acid defects improved, demonstrating that some of the lesions may be not definitive. The number of scars was significantly associated with loss of renal growth at 3 years.