894 resultados para Query expansion, Text mining, Information retrieval, Chinese IR


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we describe NewsCATS (news categorization and trading system), a system implemented to predict stock price trends for the time immediately after the publication of press releases. NewsCATS consists mainly of three components. The first component retrieves relevant information from press releases through the application of text preprocessing techniques. The second component sorts the press releases into predefined categories. Finally, appropriate trading strategies are derived by the third component by means of the earlier categorization. The findings indicate that a categorization of press releases is able to provide additional information that can be used to forecast stock price trends, but that an adequate trading strategy is essential for the results of the categorization to be fully exploited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arabidopsis thaliana, a small annual plant belonging to the mustard family, is the subject of study by an estimated 7000 researchers around the world. In addition to the large body of genetic, physiological and biochemical data gathered for this plant, it will be the first higher plant genome to be completely sequenced, with completion expected at the end of the year 2000. The sequencing effort has been coordinated by an international collaboration, the Arabidopsis Genome Initiative (AGI). The rationale for intensive investigation of Arabidopsis is that it is an excellent model for higher plants. In order to maximize use of the knowledge gained about this plant, there is a need for a comprehensive database and information retrieval and analysis system that will provide user-friendly access to Arabidopsis information. This paper describes the initial steps we have taken toward realizing these goals in a project called The Arabidopsis Information Resource (TAIR) (www.arabidopsis.org).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Despite the growing use of online databases by clinicians, there has been very little research documenting how effectively they are used. This study assessed the ability of medical and nurse-practitioner students to answer clinical questions using an information retrieval system. It also attempted to identify the demographic, experience, cognitive, personality, search mechanics, and user-satisfaction factors associated with successful use of a retrieval system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a complete system for the treatment of both geographical and temporal dimensions in text and its application to information retrieval. This system has been evaluated in both the GeoTime task of the 8th and 9th NTCIR workshop in the years 2010 and 2011 respectively, making it possible to compare the system to contemporary approaches to the topic. In order to participate in this task we have added the temporal dimension to our GIR system. The system proposed here has a modular architecture in order to add or modify features. In the development of this system, we have followed a QA-based approach as well as multi-search engines to improve the system performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information Retrieval systems normally have to work with rather heterogeneous sources, such as Web sites or documents from Optical Character Recognition tools. The correct conversion of these sources into flat text files is not a trivial task since noise may easily be introduced as a result of spelling or typeset errors. Interestingly, this is not a great drawback when the size of the corpus is sufficiently large, since redundancy helps to overcome noise problems. However, noise becomes a serious problem in restricted-domain Information Retrieval specially when the corpus is small and has little or no redundancy. This paper devises an approach which adds noise-tolerance to Information Retrieval systems. A set of experiments carried out in the agricultural domain proves the effectiveness of the approach presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La recherche d'informations s'intéresse, entre autres, à répondre à des questions comme: est-ce qu'un document est pertinent à une requête ? Est-ce que deux requêtes ou deux documents sont similaires ? Comment la similarité entre deux requêtes ou documents peut être utilisée pour améliorer l'estimation de la pertinence ? Pour donner réponse à ces questions, il est nécessaire d'associer chaque document et requête à des représentations interprétables par ordinateur. Une fois ces représentations estimées, la similarité peut correspondre, par exemple, à une distance ou une divergence qui opère dans l'espace de représentation. On admet généralement que la qualité d'une représentation a un impact direct sur l'erreur d'estimation par rapport à la vraie pertinence, jugée par un humain. Estimer de bonnes représentations des documents et des requêtes a longtemps été un problème central de la recherche d'informations. Le but de cette thèse est de proposer des nouvelles méthodes pour estimer les représentations des documents et des requêtes, la relation de pertinence entre eux et ainsi modestement avancer l'état de l'art du domaine. Nous présentons quatre articles publiés dans des conférences internationales et un article publié dans un forum d'évaluation. Les deux premiers articles concernent des méthodes qui créent l'espace de représentation selon une connaissance à priori sur les caractéristiques qui sont importantes pour la tâche à accomplir. Ceux-ci nous amènent à présenter un nouveau modèle de recherche d'informations qui diffère des modèles existants sur le plan théorique et de l'efficacité expérimentale. Les deux derniers articles marquent un changement fondamental dans l'approche de construction des représentations. Ils bénéficient notamment de l'intérêt de recherche dont les techniques d'apprentissage profond par réseaux de neurones, ou deep learning, ont fait récemment l'objet. Ces modèles d'apprentissage élicitent automatiquement les caractéristiques importantes pour la tâche demandée à partir d'une quantité importante de données. Nous nous intéressons à la modélisation des relations sémantiques entre documents et requêtes ainsi qu'entre deux ou plusieurs requêtes. Ces derniers articles marquent les premières applications de l'apprentissage de représentations par réseaux de neurones à la recherche d'informations. Les modèles proposés ont aussi produit une performance améliorée sur des collections de test standard. Nos travaux nous mènent à la conclusion générale suivante: la performance en recherche d'informations pourrait drastiquement être améliorée en se basant sur les approches d'apprentissage de représentations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La recherche d'informations s'intéresse, entre autres, à répondre à des questions comme: est-ce qu'un document est pertinent à une requête ? Est-ce que deux requêtes ou deux documents sont similaires ? Comment la similarité entre deux requêtes ou documents peut être utilisée pour améliorer l'estimation de la pertinence ? Pour donner réponse à ces questions, il est nécessaire d'associer chaque document et requête à des représentations interprétables par ordinateur. Une fois ces représentations estimées, la similarité peut correspondre, par exemple, à une distance ou une divergence qui opère dans l'espace de représentation. On admet généralement que la qualité d'une représentation a un impact direct sur l'erreur d'estimation par rapport à la vraie pertinence, jugée par un humain. Estimer de bonnes représentations des documents et des requêtes a longtemps été un problème central de la recherche d'informations. Le but de cette thèse est de proposer des nouvelles méthodes pour estimer les représentations des documents et des requêtes, la relation de pertinence entre eux et ainsi modestement avancer l'état de l'art du domaine. Nous présentons quatre articles publiés dans des conférences internationales et un article publié dans un forum d'évaluation. Les deux premiers articles concernent des méthodes qui créent l'espace de représentation selon une connaissance à priori sur les caractéristiques qui sont importantes pour la tâche à accomplir. Ceux-ci nous amènent à présenter un nouveau modèle de recherche d'informations qui diffère des modèles existants sur le plan théorique et de l'efficacité expérimentale. Les deux derniers articles marquent un changement fondamental dans l'approche de construction des représentations. Ils bénéficient notamment de l'intérêt de recherche dont les techniques d'apprentissage profond par réseaux de neurones, ou deep learning, ont fait récemment l'objet. Ces modèles d'apprentissage élicitent automatiquement les caractéristiques importantes pour la tâche demandée à partir d'une quantité importante de données. Nous nous intéressons à la modélisation des relations sémantiques entre documents et requêtes ainsi qu'entre deux ou plusieurs requêtes. Ces derniers articles marquent les premières applications de l'apprentissage de représentations par réseaux de neurones à la recherche d'informations. Les modèles proposés ont aussi produit une performance améliorée sur des collections de test standard. Nos travaux nous mènent à la conclusion générale suivante: la performance en recherche d'informations pourrait drastiquement être améliorée en se basant sur les approches d'apprentissage de représentations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turner-Fairbank Highway Research Center, McLean, Va.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turner-Fairbank Highway Research Center, McLean, Va.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (M. S.)--University of Illinois at Urbana-Champaign.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

COO-1469-0174.