999 resultados para Quantum Computer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of unitary noise on the discrete one-dimensional quantum walk is studied using computer simulations. For the noiseless quantum walk, starting at the origin (n=0) at time t=0, the position distribution P-t(n) at time t is very different from the Gaussian distribution obtained for the classical random walk. Furthermore, its standard deviation, sigma(t) scales as sigma(t)similar tot, unlike the classical random walk for which sigma(t)similar toroott. It is shown that when the quantum walk is exposed to unitary noise, it exhibits a crossover from quantum behavior for short times to classical-like behavior for long times. The crossover time is found to be Tsimilar toalpha(-2), where alpha is the standard deviation of the noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron wave motion in a quantum wire with periodic structure is treated by direct solution of the Schrödinger equation as a mode-matching problem. Our method is particularly useful for a wire consisting of several distinct units, where the total transfer matrix for wave propagation is just the product of those for its basic units. It is generally applicable to any linearly connected serial device, and it can be implemented on a small computer. The one-dimensional mesoscopic crystal recently considered by Ulloa, Castaño, and Kirczenow [Phys. Rev. B 41, 12 350 (1990)] is discussed with our method, and is shown to be a strictly one-dimensional problem. Electron motion in the multiple-stub T-shaped potential well considered by Sols et al. [J. Appl. Phys. 66, 3892 (1989)] is also treated. A structure combining features of both of these is investigated

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron wave motion in a quantum wire with periodic structure is treated by direct solution of the Schrödinger equation as a mode-matching problem. Our method is particularly useful for a wire consisting of several distinct units, where the total transfer matrix for wave propagation is just the product of those for its basic units. It is generally applicable to any linearly connected serial device, and it can be implemented on a small computer. The one-dimensional mesoscopic crystal recently considered by Ulloa, Castaño, and Kirczenow [Phys. Rev. B 41, 12 350 (1990)] is discussed with our method, and is shown to be a strictly one-dimensional problem. Electron motion in the multiple-stub T-shaped potential well considered by Sols et al. [J. Appl. Phys. 66, 3892 (1989)] is also treated. A structure combining features of both of these is investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computer simulation of reaction dynamics has nowadays reached a remarkable degree of accuracy. Triatomic elementary reactions are rigorously studied with great detail on a straightforward basis using a considerable variety of Quantum Dynamics computational tools available to the scientific community. In our contribution we compare the performance of two quantum scattering codes in the computation of reaction cross sections of a triatomic benchmark reaction such as the gas phase reaction Ne + H2+ %12. NeH++ H. The computational codes are selected as representative of time-dependent (Real Wave Packet [ ]) and time-independent (ABC [ ]) methodologies. The main conclusion to be drawn from our study is that both strategies are, to a great extent, not competing but rather complementary. While time-dependent calculations advantages with respect to the energy range that can be covered in a single simulation, time-independent approaches offer much more detailed information from each single energy calculation. Further details such as the calculation of reactivity at very low collision energies or the computational effort related to account for the Coriolis couplings are analyzed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computer simulation of reaction dynamics has nowadays reached a remarkable degree of accuracy. Triatomic elementary reactions are rigorously studied with great detail on a straightforward basis using a considerable variety of Quantum Dynamics computational tools available to the scientific community. In our contribution we compare the performance of two quantum scattering codes in the computation of reaction cross sections of a triatomic benchmark reaction such as the gas phase reaction Ne + H2+ %12. NeH++ H. The computational codes are selected as representative of time-dependent (Real Wave Packet [ ]) and time-independent (ABC [ ]) methodologies. The main conclusion to be drawn from our study is that both strategies are, to a great extent, not competing but rather complementary. While time-dependent calculations advantages with respect to the energy range that can be covered in a single simulation, time-independent approaches offer much more detailed information from each single energy calculation. Further details such as the calculation of reactivity at very low collision energies or the computational effort related to account for the Coriolis couplings are analyzed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we focus our attention on a particle that follows a unidirectional quantum walk, an alternative version of the currently widespread discrete-time quantum walk on a line. Here the walker at each time step can either remain in place or move in a fixed direction, e.g., rightward or upward. While both formulations are essentially equivalent, the present approach leads us to consider discrete Fourier transforms, which eventually results in obtaining explicit expressions for the wave functions in terms of finite sums and allows the use of efficient algorithms based on the fast Fourier transform. The wave functions here obtained govern the probability of finding the particle at any given location but determine as well the exit-time probability of the walker from a fixed interval, which is also analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methods for both partial and full optimization of wavefunction parameters are explored, and these are applied to the LiH molecule. A partial optimization can be easily performed with little difficulty. But to perform a full optimization we must avoid a wrong minimum, and deal with linear-dependency, time step-dependency and ensemble-dependency problems. Five basis sets are examined. The optimized wavefunction with a 3-function set gives a variational energy of -7.998 + 0.005 a.u., which is comparable to that (-7.990 + 0.003) 1 of Reynold's unoptimized \fin ( a double-~ set of eight functions). The optimized wavefunction with a double~ plus 3dz2 set gives ari energy of -8.052 + 0.003 a.u., which is comparable with the fixed-node energy (-8.059 + 0.004)1 of the \fin. The optimized double-~ function itself gives an energy of -8.049 + 0.002 a.u. Each number above was obtained on a Bourrghs 7900 mainframe computer with 14 -15 hrs CPU time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigates mathematical details and computational aspects of Metropolis-Hastings reptation quantum Monte Carlo and its variants, in addition to the Bounce method and its variants. The issues that concern us include the sensitivity of these algorithms' target densities to the position of the trial electron density along the reptile, time-reversal symmetry of the propagators, and the length of the reptile. We calculate the ground-state energy and one-electron properties of LiH at its equilibrium geometry for all these algorithms. The importance sampling is performed with a single-determinant large Slater-type orbitals (STO) basis set. The computer codes were written to exploit the efficiencies engineered into modern, high-performance computing software. Using the Bounce method in the calculation of non-energy-related properties, those represented by operators that do not commute with the Hamiltonian, is a novel work. We found that the unmodified Bounce gives good ground state energy and very good one-electron properties. We attribute this to its favourable time-reversal symmetry in its target density's Green's functions. Breaking this symmetry gives poorer results. Use of a short reptile in the Bounce method does not alter the quality of the results. This suggests that in future applications one can use a shorter reptile to cut down the computational time dramatically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La théorie de l'information quantique étudie les limites fondamentales qu'imposent les lois de la physique sur les tâches de traitement de données comme la compression et la transmission de données sur un canal bruité. Cette thèse présente des techniques générales permettant de résoudre plusieurs problèmes fondamentaux de la théorie de l'information quantique dans un seul et même cadre. Le théorème central de cette thèse énonce l'existence d'un protocole permettant de transmettre des données quantiques que le receveur connaît déjà partiellement à l'aide d'une seule utilisation d'un canal quantique bruité. Ce théorème a de plus comme corollaires immédiats plusieurs théorèmes centraux de la théorie de l'information quantique. Les chapitres suivants utilisent ce théorème pour prouver l'existence de nouveaux protocoles pour deux autres types de canaux quantiques, soit les canaux de diffusion quantiques et les canaux quantiques avec information supplémentaire fournie au transmetteur. Ces protocoles traitent aussi de la transmission de données quantiques partiellement connues du receveur à l'aide d'une seule utilisation du canal, et ont comme corollaires des versions asymptotiques avec et sans intrication auxiliaire. Les versions asymptotiques avec intrication auxiliaire peuvent, dans les deux cas, être considérées comme des versions quantiques des meilleurs théorèmes de codage connus pour les versions classiques de ces problèmes. Le dernier chapitre traite d'un phénomène purement quantique appelé verrouillage: il est possible d'encoder un message classique dans un état quantique de sorte qu'en lui enlevant un sous-système de taille logarithmique par rapport à sa taille totale, on puisse s'assurer qu'aucune mesure ne puisse avoir de corrélation significative avec le message. Le message se trouve donc «verrouillé» par une clé de taille logarithmique. Cette thèse présente le premier protocole de verrouillage dont le critère de succès est que la distance trace entre la distribution jointe du message et du résultat de la mesure et le produit de leur marginales soit suffisamment petite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Key agreement is a cryptographic scenario between two legitimate parties, who need to establish a common secret key over a public authenticated channel, and an eavesdropper who intercepts all their messages in order to learn the secret. We consider query complexity in which we count only the number of evaluations (queries) of a given black-box function, and classical communication channels. Ralph Merkle provided the first unclassified scheme for secure communications over insecure channels. When legitimate parties are willing to ask O(N) queries for some parameter N, any classical eavesdropper needs Omega(N^2) queries before being able to learn their secret, which is is optimal. However, a quantum eavesdropper can break this scheme in O(N) queries. Furthermore, it was conjectured that any scheme, in which legitimate parties are classical, could be broken in O(N) quantum queries. In this thesis, we introduce protocols à la Merkle that fall into two categories. When legitimate parties are restricted to use classical computers, we offer the first secure classical scheme. It requires Omega(N^{13/12}) queries of a quantum eavesdropper to learn the secret. We give another protocol having security of Omega(N^{7/6}) queries. Furthermore, for any k>= 2, we introduce a classical protocol in which legitimate parties establish a secret in O(N) queries while the optimal quantum eavesdropping strategy requires Theta(N^{1/2+k/{k+1}}) queries, approaching Theta(N^{3/2}) when k increases. When legitimate parties are provided with quantum computers, we present two quantum protocols improving on the best known scheme before this work. Furthermore, for any k>= 2, we give a quantum protocol in which legitimate parties establish a secret in O(N) queries while the optimal quantum eavesdropping strategy requires Theta(N^{1+{k}/{k+1}})} queries, approaching Theta(N^{2}) when k increases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dans ce mémoire, nous nous pencherons tout particulièrement sur une primitive cryptographique connue sous le nom de partage de secret. Nous explorerons autant le domaine classique que le domaine quantique de ces primitives, couronnant notre étude par la présentation d’un nouveau protocole de partage de secret quantique nécessitant un nombre minimal de parts quantiques c.-à-d. une seule part quantique par participant. L’ouverture de notre étude se fera par la présentation dans le chapitre préliminaire d’un survol des notions mathématiques sous-jacentes à la théorie de l’information quantique ayant pour but primaire d’établir la notation utilisée dans ce manuscrit, ainsi que la présentation d’un précis des propriétés mathématique de l’état de Greenberger-Horne-Zeilinger (GHZ) fréquemment utilisé dans les domaines quantiques de la cryptographie et des jeux de la communication. Mais, comme nous l’avons mentionné plus haut, c’est le domaine cryptographique qui restera le point focal de cette étude. Dans le second chapitre, nous nous intéresserons à la théorie des codes correcteurs d’erreurs classiques et quantiques qui seront à leur tour d’extrême importances lors de l’introduction de la théorie quantique du partage de secret dans le chapitre suivant. Dans la première partie du troisième chapitre, nous nous concentrerons sur le domaine classique du partage de secret en présentant un cadre théorique général portant sur la construction de ces primitives illustrant tout au long les concepts introduits par des exemples présentés pour leurs intérêts autant historiques que pédagogiques. Ceci préparera le chemin pour notre exposé sur la théorie quantique du partage de secret qui sera le focus de la seconde partie de ce même chapitre. Nous présenterons alors les théorèmes et définitions les plus généraux connus à date portant sur la construction de ces primitives en portant un intérêt particulier au partage quantique à seuil. Nous montrerons le lien étroit entre la théorie quantique des codes correcteurs d’erreurs et celle du partage de secret. Ce lien est si étroit que l’on considère les codes correcteurs d’erreurs quantiques étaient de plus proches analogues aux partages de secrets quantiques que ne leur étaient les codes de partage de secrets classiques. Finalement, nous présenterons un de nos trois résultats parus dans A. Broadbent, P.-R. Chouha, A. Tapp (2009); un protocole sécuritaire et minimal de partage de secret quantique a seuil (les deux autres résultats dont nous traiterons pas ici portent sur la complexité de la communication et sur la simulation classique de l’état de GHZ).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La théorie de l'information quantique s'est développée à une vitesse fulgurante au cours des vingt dernières années, avec des analogues et extensions des théorèmes de codage de source et de codage sur canal bruité pour la communication unidirectionnelle. Pour la communication interactive, un analogue quantique de la complexité de la communication a été développé, pour lequel les protocoles quantiques peuvent performer exponentiellement mieux que les meilleurs protocoles classiques pour certaines tâches classiques. Cependant, l'information quantique est beaucoup plus sensible au bruit que l'information classique. Il est donc impératif d'utiliser les ressources quantiques à leur plein potentiel. Dans cette thèse, nous étudions les protocoles quantiques interactifs du point de vue de la théorie de l'information et étudions les analogues du codage de source et du codage sur canal bruité. Le cadre considéré est celui de la complexité de la communication: Alice et Bob veulent faire un calcul quantique biparti tout en minimisant la quantité de communication échangée, sans égard au coût des calculs locaux. Nos résultats sont séparés en trois chapitres distincts, qui sont organisés de sorte à ce que chacun puisse être lu indépendamment. Étant donné le rôle central qu'elle occupe dans le contexte de la compression interactive, un chapitre est dédié à l'étude de la tâche de la redistribution d'état quantique. Nous prouvons des bornes inférieures sur les coûts de communication nécessaires dans un contexte interactif. Nous prouvons également des bornes atteignables avec un seul message, dans un contexte d'usage unique. Dans un chapitre subséquent, nous définissons une nouvelle notion de complexité de l'information quantique. Celle-ci caractérise la quantité d'information, plutôt que de communication, qu'Alice et Bob doivent échanger pour calculer une tâche bipartie. Nous prouvons beaucoup de propriétés structurelles pour cette quantité, et nous lui donnons une interprétation opérationnelle en tant que complexité de la communication quantique amortie. Dans le cas particulier d'entrées classiques, nous donnons une autre caractérisation permettant de quantifier le coût encouru par un protocole quantique qui oublie de l'information classique. Deux applications sont présentées: le premier résultat général de somme directe pour la complexité de la communication quantique à plus d'une ronde, ainsi qu'une borne optimale, à un terme polylogarithmique près, pour la complexité de la communication quantique avec un nombre de rondes limité pour la fonction « ensembles disjoints ». Dans un chapitre final, nous initions l'étude de la capacité interactive quantique pour les canaux bruités. Étant donné que les techniques pour distribuer de l'intrication sont bien étudiées, nous nous concentrons sur un modèle avec intrication préalable parfaite et communication classique bruitée. Nous démontrons que dans le cadre plus ardu des erreurs adversarielles, nous pouvons tolérer un taux d'erreur maximal de une demie moins epsilon, avec epsilon plus grand que zéro arbitrairement petit, et ce avec un taux de communication positif. Il s'ensuit que les canaux avec bruit aléatoire ayant une capacité positive pour la transmission unidirectionnelle ont une capacité positive pour la communication interactive quantique. Nous concluons avec une discussion de nos résultats et des directions futures pour ce programme de recherche sur une théorie de l'information quantique interactive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron wave motion in a quantum wire with periodic structure is treated by direct solution of the Schrödinger equation as a mode-matching problem. Our method is particularly useful for a wire consisting of several distinct units, where the total transfer matrix for wave propagation is just the product of those for its basic units. It is generally applicable to any linearly connected serial device, and it can be implemented on a small computer. The one-dimensional mesoscopic crystal recently considered by Ulloa, Castaño, and Kirczenow [Phys. Rev. B 41, 12 350 (1990)] is discussed with our method, and is shown to be a strictly one-dimensional problem. Electron motion in the multiple-stub T-shaped potential well considered by Sols et al. [J. Appl. Phys. 66, 3892 (1989)] is also treated. A structure combining features of both of these is investigated

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During recent years, quantum information processing and the study of N−qubit quantum systems have attracted a lot of interest, both in theory and experiment. Apart from the promise of performing efficient quantum information protocols, such as quantum key distribution, teleportation or quantum computation, however, these investigations also revealed a great deal of difficulties which still need to be resolved in practise. Quantum information protocols rely on the application of unitary and non–unitary quantum operations that act on a given set of quantum mechanical two-state systems (qubits) to form (entangled) states, in which the information is encoded. The overall system of qubits is often referred to as a quantum register. Today the entanglement in a quantum register is known as the key resource for many protocols of quantum computation and quantum information theory. However, despite the successful demonstration of several protocols, such as teleportation or quantum key distribution, there are still many open questions of how entanglement affects the efficiency of quantum algorithms or how it can be protected against noisy environments. To facilitate the simulation of such N−qubit quantum systems and the analysis of their entanglement properties, we have developed the Feynman program. The program package provides all necessary tools in order to define and to deal with quantum registers, quantum gates and quantum operations. Using an interactive and easily extendible design within the framework of the computer algebra system Maple, the Feynman program is a powerful toolbox not only for teaching the basic and more advanced concepts of quantum information but also for studying their physical realization in the future. To this end, the Feynman program implements a selection of algebraic separability criteria for bipartite and multipartite mixed states as well as the most frequently used entanglement measures from the literature. Additionally, the program supports the work with quantum operations and their associated (Jamiolkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. As an application of the developed tools we further present two case studies in which the entanglement of two atomic processes is investigated. In particular, we have studied the change of the electron-ion spin entanglement in atomic photoionization and the photon-photon polarization entanglement in the two-photon decay of hydrogen. The results show that both processes are, in principle, suitable for the creation and control of entanglement. Apart from process-specific parameters like initial atom polarization, it is mainly the process geometry which offers a simple and effective instrument to adjust the final state entanglement. Finally, for the case of the two-photon decay of hydrogenlike systems, we study the difference between nonlocal quantum correlations, as given by the violation of the Bell inequality and the concurrence as a true entanglement measure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myoglobin has been studied in considerable detail using different experimental and computational techniques over the past decades. Recent developments in time-resolved spectroscopy have provided experimental data amenable to detailed atomistic simulations. The main theme of the present review are results on the structures, energetics and dynamics of ligands ( CO, NO) interacting with myoglobin from computer simulations. Modern computational methods including free energy simulations, mixed quantum mechanics/molecular mechanics simulations, and reactive molecular dynamics simulations provide insight into the dynamics of ligand dynamics in confined spaces complementary to experiment. Application of these methods to calculate and understand experimental observations for myoglobin interacting with CO and NO are presented and discussed.