867 resultados para Quadratic filter
Resumo:
The primary objective of this study is to develop a robust queue estimation algorithm for motorway on-ramps. Real-time queue information is the most vital input for a dynamic queue management that can treat long queues on metered on-ramps more sophistically. The proposed algorithm is developed based on the Kalman filter framework. The fundamental conservation model is used to estimate the system state (queue size) with the flow-in and flow-out measurements. This projection results are updated with the measurement equation using the time occupancies from mid-link and link-entrance loop detectors. This study also proposes a novel single point correction method. This method resets the estimated system state to eliminate the counting errors that accumulate over time. In the performance evaluation, the proposed algorithm demonstrated accurate and reliable performances and consistently outperformed the benchmarked Single Occupancy Kalman filter (SOKF) method. The improvements over SOKF are 62% and 63% in average in terms of the estimation accuracy (MAE) and reliability (RMSE), respectively. The benefit of the innovative concepts of the algorithm is well justified by the improved estimation performance in the congested ramp traffic conditions where long queues may significantly compromise the benchmark algorithm’s performance.
Resumo:
This thesis establishes performance properties for approximate filters and controllers that are designed on the basis of approximate dynamic system representations. These performance properties provide a theoretical justification for the widespread application of approximate filters and controllers in the common situation where system models are not known with complete certainty. This research also provides useful tools for approximate filter designs, which are applied to hybrid filtering of uncertain nonlinear systems. As a contribution towards applications, this thesis also investigates air traffic separation control in the presence of measurement uncertainties.
Resumo:
The paper introduces the design of robust current and voltage control algorithms for a grid-connected three-phase inverter which is interfaced to the grid through a high-bandwidth three-phase LCL filter. The algorithms are based on the state feedback control which have been designed in a systematic approach and improved by using oversampling to deal with the issues arising due to the high-bandwidth filter. An adaptive loop delay compensation method has also been adopted to minimize the adverse effects of loop delay in digital controller and to increase the robustness of the control algorithm in the presence of parameter variations. Simulation results are presented to validate the effectiveness of the proposed algorithm.
Resumo:
Background In Pacific Island Countries (PICs) the epidemiology of dengue is characterized by long-term transmission of a single dengue virus (DENV) serotype. The emergence of a new serotype in one island country often indicates major outbreaks with this serotype will follow in other PICs. Objectives Filter paper (FP) cards on which whole blood or serum from dengue suspected patients had been dried was evaluated as a method for transportation of this material by standard mail delivery throughout the Pacific. Study design Twenty-two FP-dried whole blood samples collected from patients in New Caledonia and Wallis & Futuna Islands, during DENV-1 and DENV-4 transmission, and 76 FP-dried sera collected from patients in Yap State, Majuro (Republic of Marshall Islands), Tonga and Fiji, before and during outbreaks of DENV-2 in Yap State and DENV-4 in Majuro, were tested for the presence of DENV RNA, by serotype specific RT-PCR, at the Institut Louis Malardé in French Polynesia. Results The serotype of DENV could be determined, by a variety of RT-PCR procedures, in the FP-dried samples after more than three weeks of transport at ambient temperatures. In most cases, the sequencing of the envelope gene to genotype the viruses also was possible. Conclusions The serotype and genotype of DENV can be determined from FP-dried serum or whole blood samples transported over thousands of kilometers at ambient, tropical, temperatures. This simple and low-cost approach to virus identification should be evaluated in isolated and resource poor settings for surveillance for a range of significant viral diseases.
Resumo:
Interior permanent-magnet synchronous motors (IPMSMs) become attractive candidates in modern hybrid electric vehicles and industrial applications. Usually, to obtain good control performance, the electric drives of this kind of motor require one position, one dc link, and at least two current sensors. Failure of any of these sensors might lead to degraded system performance or even instability. As such, sensor fault resilient control becomes a very important issue in modern drive systems. This paper proposes a novel sensor fault detection and isolation algorithm based on an extended Kalman filter. It is robust to system random noise and efficient in real-time implementation. Moreover, the proposed algorithm is compact and can detect and isolate all the sensor faults for IPMSM drives. Thorough theoretical analysis is provided, and the effectiveness of the proposed approach is proven by extensive experimental results.
Resumo:
We present a distinguishing attack against SOBER-128 with linear masking. We found a linear approximation which has a bias of 2^− − 8.8 for the non-linear filter. The attack applies the observation made by Ekdahl and Johansson that there is a sequence of clocks for which the linear combination of some states vanishes. This linear dependency allows that the linear masking method can be applied. We also show that the bias of the distinguisher can be improved (or estimated more precisely) by considering quadratic terms of the approximation. The probability bias of the quadratic approximation used in the distinguisher is estimated to be equal to O(2^− − 51.8), so that we claim that SOBER-128 is distinguishable from truly random cipher by observing O(2^103.6) keystream words.
Resumo:
The means of reducing nanoparticle contamination in the synthesis of carbon nanostructures in reactive Ar + H2 + CH4 plasmas are studied. It is shown that by combining the electrostatic filtering and thermophoretic manipulation of nanoparticles, one can significantly improve the quality of carbon nanopatterns. By increasing the substrate heating power, one can increase the size of deposited nanoparticles and eventually achieve nanoparticle-free nanoassemblies. This approach is generic and is applicable to other reactive plasma-aided nanofabrication processes.
Resumo:
In this paper, a method of thrust allocation based on a linearly constrained quadratic cost function capable of handling rotating azimuths is presented. The problem formulation accounts for magnitude and rate constraints on both thruster forces and azimuth angles. The advantage of this formulation is that the solution can be found with a finite number of iterations for each time step. Experiments with a model ship are used to validate the thrust allocation system.
Resumo:
Novel filter Palygorskite porous ceramsite (PC) was prepared using Palygorskite clay, poreforming material sawdust, and sodium silicate with a mass ratio of 10:2:1 after sintering at 700°C for 180 min. PC was characterized with X-ray diffraction, X-ray fluorescence, scanning electron microscopy, elemental, and porosimetry. PC had a total porosity of 67% and specific surface area of 61 m2/g. In order to assess the usefulness of PC as a medium for biological aerated filters (BAF), PC and (commercially available ceramsite) CAC were used to treat wastewater city in two laboratory-scale upflow BAFs. The results showed that the reactor containing PC was more efficient than the reactor containing CAC in terms of total organic carbon (TOC), ammonia nitrogen (NH3-N), and the removal of total nitrogen (TN) and phosphorus (P). This system was found to be more efficient at water temperatures ranging from 20 to 26°C, an air–water (A/W) ratio of 3:1, dissolved oxygen concentration >4.00 mg/L, and hydraulic retention time (HRT) ranging from 0.5 to 7 h. The interconnected porous structure produced for PC was suitable for microbial growth, and primarily protozoan and metazoan organisms were found in the biofilm. Microorganism growth also showed that, under the same submerged culture conditions, the biological mass in PC was significantly higher than in CAC (34.1 and 2.2 mg TN/g, respectively). In this way, PC media can be considered suitable for the use as a medium in novel biological aerated filters for the simultaneous removal of nitrogen and phosphorus.
Resumo:
In the commercial food industry, demonstration of microbiological safety and thermal process equivalence often involves a mathematical framework that assumes log-linear inactivation kinetics and invokes concepts of decimal reduction time (DT), z values, and accumulated lethality. However, many microbes, particularly spores, exhibit inactivation kinetics that are not log linear. This has led to alternative modeling approaches, such as the biphasic and Weibull models, that relax strong log-linear assumptions. Using a statistical framework, we developed a novel log-quadratic model, which approximates the biphasic and Weibull models and provides additional physiological interpretability. As a statistical linear model, the log-quadratic model is relatively simple to fit and straightforwardly provides confidence intervals for its fitted values. It allows a DT-like value to be derived, even from data that exhibit obvious "tailing." We also showed how existing models of non-log-linear microbial inactivation, such as the Weibull model, can fit into a statistical linear model framework that dramatically simplifies their solution. We applied the log-quadratic model to thermal inactivation data for the spore-forming bacterium Clostridium botulinum and evaluated its merits compared with those of popular previously described approaches. The log-quadratic model was used as the basis of a secondary model that can capture the dependence of microbial inactivation kinetics on temperature. This model, in turn, was linked to models of spore inactivation of Sapru et al. and Rodriguez et al. that posit different physiological states for spores within a population. We believe that the log-quadratic model provides a useful framework in which to test vitalistic and mechanistic hypotheses of inactivation by thermal and other processes. Copyright © 2009, American Society for Microbiology. All Rights Reserved.
Resumo:
It is traditional to initialise Kalman filters and extended Kalman filters with estimates of the states calculated directly from the observed (raw) noisy inputs, but unfortunately their performance is extremely sensitive to state initialisation accuracy: good initial state estimates ensure fast convergence whereas poor estimates may give rise to slow convergence or even filter divergence. Divergence is generally due to excessive observation noise and leads to error magnitudes that quickly become unbounded (R.J. Fitzgerald, 1971). When a filter diverges, it must be re initialised but because the observations are extremely poor, re initialised states will have poor estimates. The paper proposes that if neurofuzzy estimators produce more accurate state estimates than those calculated from the observed noisy inputs (using the known state model), then neurofuzzy estimates can be used to initialise the states of Kalman and extended Kalman filters. Filters whose states have been initialised with neurofuzzy estimates should give improved performance by way of faster convergence when the filter is initialised, and when a filter is re started after divergence
Resumo:
Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to 1100 0C at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.