964 resultados para QUANTUM DIELECTRIC THEORY


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Es mostra que, gracies a una extensió en la definició dels Índexs Moleculars Topològics, s'arriba a la formulació d'índexs relacionats amb la teoria de la Semblança Molecular Quàntica. Es posa de manifest la connexió entre les dues metodologies: es revela que un marc de treball teòric sòlidament fonamentat sobre la teoria de la Mecànica Quàntica es pot connectar amb una de les tècniques més antigues relacionades amb els estudis de QSPR. Es mostren els resultats per a dos casos d'exemple d'aplicació d'ambdues metodologies

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La present tesi està centrada en l'ús de la Teoria de Semblança Quàntica per a calcular descriptors moleculars. Aquests descriptors s'utilitzen com a paràmetres estructurals per a derivar correlacions entre l'estructura i la funció o activitat experimental per a un conjunt de compostos. Els estudis de Relacions Quantitatives Estructura-Activitat són d'especial interès per al disseny racional de molècules assistit per ordinador i, en particular, per al disseny de fàrmacs. Aquesta memòria consta de quatre parts diferenciades. En els dos primers blocs es revisen els fonaments de la teoria de semblança quàntica, així com l'aproximació topològica basada en la teoria de grafs. Ambdues teories es fan servir per a calcular els descriptors moleculars. En el segon bloc, s'ha de remarcar la programació i implementació de programari per a calcular els anomenats índexs topològics de semblança quàntica. La tercera secció detalla les bases de les Relacions Quantitatives Estructura-Activitat i, finalment, el darrer apartat recull els resultats d'aplicació obtinguts per a diferents sistemes biològics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E(N+1) - E(n))t). The gap E(N+1) - E(n) can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m(b) in HQET.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using the functional integral formalism for the statistical generating functional in the statistical (finite temperature) quantum field theory, we prove the equivalence of many-photon Greens functions in the Duffin-Kennner-Petiau and Klein-Gordon-Fock statistical quantum field theories. As an illustration, we calculate the one-loop polarization operators in both theories and demonstrate their coincidence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nonequilibrium effective equation of motion for a scalar background field in a thermal bath is studied numerically. This equation emerges from a microscopic quantum field theory derivation and it is suitable to a Langevin simulation on the lattice. Results for both the symmetric and broken phases are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The matching of the BPS part of the (super) membrane's spectrum enables one to obtain membrane's results via string calculations. We compute the thermodynamic behavior at large coupling constant by considering M-theory on a manifold with topology T-2 X R-9. In the small coupling limit of M-theory the entropy coincides with the standard entropy of type IIB strings. We claim that the finite temperature partition functions associated with BPS p-brane spectrum can be analytically continued to well-defined functionals. This means that finite temperature can be introduced in brane theory. For the point particle limit (p --> 0) the entropy has the standard behavior of thermodynamic quantities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In certain Mott-insulating dimerized antiferromagnets, triplet excitations of the paramagnetic phase display both three-particle and four-particle interactions. When such a magnet undergoes a quantum phase transition into a magnetically ordered state, the three-particle interaction becomes part of the critical theory provided that the lattice ordering wave vector is zero. One microscopic example is the staggered-dimer antiferromagnet on the square lattice, for which deviations from O(3) universality have been reported in numerical studies. Using both symmetry arguments and microscopic calculations, we show that a nontrivial cubic term arises in the relevant order-parameter quantum field theory, and we assess its consequences using a combination of analytical and numerical methods. We also present finite-temperature quantum Monte Carlo data for the staggered-dimer antiferromagnet which complement recently published results. The data can be consistently interpreted in terms of critical exponents identical to that of the standard O(3) universality class, but with anomalously large corrections to scaling. We argue that the cubic interaction of critical triplons, although irrelevant in two spatial dimensions, is responsible for the leading corrections to scaling due to its small scaling dimension.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We prove the equivalence of many-gluon Green's functions in the Duffin-Kemmer-Petieu and Klein-Gordon-Fock statistical quantum field theories. The proof is based on the functional integral formulation for the statistical generating functional in a finite-temperature quantum field theory. As an illustration, we calculate one-loop polarization operators in both theories and show that their expressions indeed coincide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider general d-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region ('beta' << 1). Each model is characterized by a single site apriori spin distribution taken to be even. We also take the parameter 'alfa' = ('S POT.4') - 3 '(S POT.2') POT.2' > 0, i.e. in the region which we call Gaussian subjugation, where ('S POT.K') denotes the kth moment of the apriori distribution. Associated with the model is a lattice quantum field theory known to contain a particle of asymptotic mass -ln 'beta' and a bound state below the two-particle threshold. We develop a 'beta' analytic perturbation theory for the binding energy of this bound state. As a key ingredient in obtaining our result we show that the Fourier transform of the two-point function is a meromorphic function, with a simple pole, in a suitable complex spectral parameter and the coefficients of its Laurent expansion are analytic in 'beta'.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Spin-Statistics theorem states that the statistics of a system of identical particles is determined by their spin: Particles of integer spin are Bosons (i.e. obey Bose-Einstein statistics), whereas particles of half-integer spin are Fermions (i.e. obey Fermi-Dirac statistics). Since the original proof by Fierz and Pauli, it has been known that the connection between Spin and Statistics follows from the general principles of relativistic Quantum Field Theory. In spite of this, there are different approaches to Spin-Statistics and it is not clear whether the theorem holds under assumptions that are different, and even less restrictive, than the usual ones (e.g. Lorentz-covariance). Additionally, in Quantum Mechanics there is a deep relation between indistinguishabilty and the geometry of the configuration space. This is clearly illustrated by Gibbs' paradox. Therefore, for many years efforts have been made in order to find a geometric proof of the connection between Spin and Statistics. Recently, various proposals have been put forward, in which an attempt is made to derive the Spin-Statistics connection from assumptions different from the ones used in the relativistic, quantum field theoretic proofs. Among these, there is the one due to Berry and Robbins (BR), based on the postulation of a certain single-valuedness condition, that has caused a renewed interest in the problem. In the present thesis, we consider the problem of indistinguishability in Quantum Mechanics from a geometric-algebraic point of view. An approach is developed to study configuration spaces Q having a finite fundamental group, that allows us to describe different geometric structures of Q in terms of spaces of functions on the universal cover of Q. In particular, it is shown that the space of complex continuous functions over the universal cover of Q admits a decomposition into C(Q)-submodules, labelled by the irreducible representations of the fundamental group of Q, that can be interpreted as the spaces of sections of certain flat vector bundles over Q. With this technique, various results pertaining to the problem of quantum indistinguishability are reproduced in a clear and systematic way. Our method is also used in order to give a global formulation of the BR construction. As a result of this analysis, it is found that the single-valuedness condition of BR is inconsistent. Additionally, a proposal aiming at establishing the Fermi-Bose alternative, within our approach, is made.