122 resultados para Purpura.
Resumo:
Pregnancy may precipitate acute episodes of thrombotic thrombocytopenic purpura (TTP), but pregnancy outcomes in women who have recovered from acquired TTP are not well documented. We analyzed pregnancy outcomes following recovery from TTP associated with acquired, severe ADAMTS13 deficiency (ADAMTS13 activity <10%) in women enrolled in the Oklahoma TTP-HUS Registry from 1995 to 2012. We also systematically searched for published reports on outcomes of pregnancies following recovery from TTP associated with acquired, severe ADAMTS13 deficiency. Ten women in the Oklahoma Registry had 16 subsequent pregnancies from 1999 to 2013. Two women had recurrent TTP, which occurred 9 and 29 days postpartum. Five of 16 pregnancies (31%, 95% confidence interval, 11%-59%) in 3 women were complicated by preeclampsia, a frequency greater than US population estimates (2.1%-3.2%). Thirteen (81%) pregnancies resulted in normal children. The literature search identified 382 articles. Only 6 articles reported pregnancies in women who had recovered from TTP associated with acquired, severe ADAMTS13 deficiency, describing 10 pregnancies in 8 women. TTP recurred in 6 pregnancies. Conclusions: With prospective complete follow-up, recurrent TTP complicating subsequent pregnancies in Oklahoma patients is uncommon, but the occurrence of preeclampsia may be increased. Most pregnancies following recovery from TTP in Oklahoma patients result in normal children.
Resumo:
Anti-ADAMTS13 autoantibodies are the main cause of acquired thrombotic thrombocytopenic purpura. Binding of these antibodies to ADAMTS13 eventually results in the formation of antigen-antibody immune complexes. Circulating ADAMTS13-specific immune complexes have been described in acquired thrombotic thrombocytopenic purpura patients, however, the prevalence and persistence of these immune complexes over time has hitherto remained elusive. Here, we analyzed a large cohort of patients with acquired thrombotic thrombocytopenic purpura for the presence of free and complexed anti-ADAMTS13 antibodies. In the acute phase (n=68), 100% of patients had free IgG antibodies and 97% had ADAMTS13-specific immune complexes. In remission (n=28), 75% of patients had free antibodies (mainly IgG) and 93% had ADAMTS13-specific immune complexes. Free antibodies were mainly of subclasses IgG1 and IgG4, whereas IgG4 was by far the most prevalent in ADAMTS13-specific immune complexes. Comparison of ADAMTS13 inhibitor and anti-ADAMTS13 IgG (total and subclasses) antibody titers in acute phase and in remission samples showed a statistically significant decrease in all parameters in remission. Although non-significant, a trend towards reduced or undetectable titers in remission was also observed for ADAMTS13-specific immune complexes of subclasses IgG1, IgG2 and IgG3. For IgG4, no such trend was discernible; IgG4 immune complexes persisted over years, even in patients who had been treated with rituximab and who showed no features suggesting relapse.
Resumo:
UNLABELLED We report on our patient (case 2) who experienced a first acute episode of thrombotic thrombocytopenic purpura (TTP) at the age of 19 years during her first pregnancy in 1976 which ended in a spontaneous abortion in the 30th gestational week. Treatment with red blood cell concentrates was implemented and splenectomy was performed. After having suffered from several TTP episodes in 1977, possibly mitigated by acetylsalicylic acid therapy, an interruption and sterilization were performed in 1980 in her second pregnancy thereby avoiding another disease flare-up. Her elder sister (case 1) had been diagnosed with TTP in 1974, also during her first pregnancy. She died in 1977 during her second pregnancy from a second acute TTP episode. DIAGNOSIS In 2013 a severe ADAMTS13 deficiency of <10% without detectable ADAMTS13 inhibitor was repeatedly found. Investigation of the ADAMTS13 gene showed that the severe ADAMTS13 deficiency was caused by compound heterozygous ADAMTS13 mutations: a premature stop codon in exon 2 (p.Q44X), and a missense mutation in exon 24 (p.R1060W) associated with low but measurable ADAMTS13 activity. CONCLUSION Genetic analysis of the ADAMTS13 gene is important in TTP patients of all ages if an ADAMTS13 inhibitor has been excluded.
Resumo:
Acquired thrombotic thrombocytopenic purpura (TTP) is the consequence of a severe ADAMTS13 deficiency resulting from autoantibodies inhibiting ADAMTS13 or accelerating its clearance. Despite the success of plasma exchange the risk of relapse is high. From 2 patients (A and B), splenectomized for recurrent episodes of acquired TTP, the splenic B-cell response against ADAMTS13 was characterized through generation of human monoclonal anti-ADAMTS13 autoantibodies (mAbs) by cloning an immunoglobulin G (IgG)4κ- and IgG4λ-Fab library using phage display technology and by Epstein-Barr virus transformation of switched memory B cells (CD19+/CD27+/IgG+). Sequence analysis of the anti-ADAMTS13 IgGs of both patients revealed that the VH gene use was limited in our patients to VH1-3 (55%), VH1-69 (17%), VH3-30 (7%), and VH4-28 (21%) and contained 8 unique and thus far not reported heavy-chain complementarity determining region 3 motifs, of which 4 were shared by the 2 patients. The discovery of several highly similar anti-ADAMTS13 autoantibodies in 2 unrelated TTP patients suggests that the autoimmune response is antigen driven, because the probability that such similar immunoglobulin rearrangements happen by chance is very low (< 10(-9)).
Resumo:
Le purpura thrombotique thrombocytopénique (PTT) est un diagnostic caractérisé par une hémolyse micro-angiopathique, se traduisant par la présence d’une thrombocytopénie et d’une schizocytose au frottis sanguin. Une déficience de l’enzyme ADAMTS13, enzyme protéolytique du facteur de von Willebrand (vWF), a été caractérisée comme cause pathogénique. L’importance de l’examen visuel du frottis sanguin dans le cadre d’une suspicion clinique ou hématologique d’un PTT est soulignée car il semble que le PTT soit sous-diagnostiqué, surtout parmi les enfants et jeunes adultes. Des superpositions avec le syndrome hémolytique et urémique associé aux diarrhées (SHU D+) et le syndrome hémolytique et urémique atypique (SHUa) sont discutées. Une revue actuelle des démarches diagnostiques, des options thérapeutiques et des facteurs pronostiques du PTT et des SHU est finalement proposée.
Resumo:
IgA nephropathy is the most common glomerulonephritis in Europe. The disease has been discovered in 1968 in Paris by Jean Berger at the Necker-Children's Hospital. Diagnosis is made by kidney biopsy and requires the presence of mesangial deposits of IgA. This form of glomerulonephritis can be seen in children and adults. In childhood, it most frequently presents within the context of Schoenlein-Henoch purpura. In adulthood, the most common form is limited to the kidney. Schoenlein-Henoch purpura can be seen in adults and manifests as a very aggressive vasculitis, usually in the context of a specific drug intake. The underlying pathophysiological concept today is an insufficient glycosylation of the IgA1 hinge region triggering the formation of autoantibodies against this site. Therapeutic options for the disease are limited. Important is optimal blood pressure control. Selected patients will profit from steroid therapy.
Resumo:
Approximately 40% of patients who survive acute episodes of thrombotic thrombocytopenic purpura (TTP) associated with severe acquired ADAMTS13 deficiency experience one or more relapses. Risk factors for relapse other than severe ADAMTS13 deficiency and ADAMTS13 autoantibodies are unknown. ADAMTS13 autoantibodies, TTP episodes following infection or type I interferon treatment and reported ensuing systemic lupus erythematosus in some patients suggest immune dysregulation. This cross-sectional study asked whether autoantibodies against RNA-binding proteins or peripheral blood gene expression profiles measured during remission are associated with history of prior relapse in acquired ADAMTS13-deficient TTP. Peripheral blood from 38 well-characterized patients with autoimmune ADAMTS13-deficient TTP in remission was examined for autoantibodies and global gene expression. A subset of TTP patients (9 patients, 24%) exhibited a peripheral blood gene signature composed of elevated ribosomal transcripts that associated with prior relapse. A non-overlapping subset of TTP patients (9 patients, 24%) displayed a peripheral blood type I interferon gene signature that associated with autoantibodies to RNA-binding proteins but not with history of relapse. Patients who had relapsed bimodally expressed higher HLA transcript levels independently of ribosomal transcripts. Presence of any one potential risk factor (ribosomal gene signature, elevated HLA-DRB1, elevated HLA-DRB5) associated with relapse (OR = 38.4; p = 0.0002) more closely than any factor alone or all factors together. Levels of immune transcripts typical of natural killer (NK) and T lymphocytes positively correlated with ribosomal gene expression and number of prior episodes but not with time since the most recent episode. Flow cytometry confirmed elevated expression of cell surface markers encoded by these transcripts on T and/or NK cell subsets of patients who had relapsed. These data associate elevated ribosomal and immune transcripts with relapse history in acquired, ADAMTS13-deficient TTP.
Resumo:
BACKGROUND Hereditary thrombotic thrombocytopenic purpura (TTP) caused by ADAMTS13 mutations is a rare, but serious condition. The prevalence is unknown, but seems to be high in Norway. OBJECTIVES To identify all patients with hereditary TTP in Central Norway and to investigate the prevalence of hereditary TTP and the population frequencies of two common ADAMTS13 mutations. Patients/Methods Patients were identified in a cross-sectional study within Central Norway Health Region by means of three different search strategies. Frequencies of ADAMTS13 mutations, c.4143_4144dupA and c.3178 C>T (p.R1060W) were investigated in a population-based cohort (500 alleles) and in healthy blood donors (2104 alleles) by taking advantage of the close neighbourhood of the ADAMTS13 and ABO blood group gene loci. The observed prevalence of hereditary TTP was compared to the rates of ADAMTS13 mutation carriers in different geographical regions. RESULTS We identified 11 families with hereditary TTP in Central Norway during the 10-year study period. The prevalence of hereditary TTP in Central Norway was 16.7 x 10(-6) . The most prevalent mutation was c.4143_4144dupA, accounting for two thirds of disease causing alleles among patients and having an allelic frequency of 0.33% in the Central, 0.10% in the Western, and 0.04% in the Southeastern Norwegian population. The allelic frequency of c.3178 C>T (p.R1060W) in the population was even higher (0.3-1%), but this mutation was infrequent among patients, with no homozygous cases. CONCLUSIONS We found a high prevalence of hereditary TTP in Central Norway and an apparently different penetrance of ADAMTS13 mutations. This article is protected by copyright. All rights reserved.
Resumo:
BACKGROUND Thrombotic thrombocytopenic purpura (TTP) is a severe disorder affecting the microcirculation of multiple organs due to a systemic endothelial cell injury secondary to a deficiency in ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 motif, member 13) activity. TTP is a rare complication of pregnancy with a poor prognosis and high fetal mortality, especially when it occurs during the first trimester. Recent data have supported that effective treatment of TTP is plasma therapy. Unfortunately a major problem remains in the delay in diagnosis due to confounding factors between other "imitators of preeclampsia." Rapid and readily available laboratory testing to quickly diagnose TTP is desperately needed to improve care and to save mother and future child life. CASE REPORT We describe a rare case of successful pregnancy after TTP manifestations occurring in the first trimester; most importantly, our experience represents the first case of atypical manifestation due to neurologic and kidney manifestations preceding laboratory assay alterations. RESULTS We treated a patient with plasma replacement of 30 mL/kg/day and daily plasmapheresis in combination with continuous infusion of fresh-frozen plasma 10 mL/kg/day. The response of clinical manifestation immediately improved. At 30 weeks, the patient had multiple episodes of high blood pressure and concomitant decrease of hemoglobin and platelet count, so a cesarean section was immediately performed. She delivered a healthy female baby. CONCLUSION Early diagnosis by ADAMTS13 activity, occasionally occurring before clinical manifestations, aided us in promptly administering commended and life-saving treatments.
Resumo:
The complex relation between thrombotic thrombocytopenic purpura (TTP) and pregnancy is concisely reviewed. Pregnancy is a very strong trigger for acute disease manifestation in patients with hereditary TTP caused by double heterozygous or homozygous mutations of ADAMTS13 (ADisintegrin And Metalloprotease with ThromboSpondin type 1 domains, no. 13). In several affected women disease onset during their first pregnancy leads to the diagnosis of hereditary TTP. Without plasma treatment mother and especially fetus are at high risk of dying. The relapse risk during a next pregnancy is almost 100% but regular plasma transfusion starting in early pregnancy will prevent acute TTP flare-up and may result in successful pregnancy outcome. Pregnancy may also constitute a mild risk factor for the onset of acute acquired TTP caused by autoantibody-mediated severe ADAMTS13 deficiency. Women having survived acute acquired TTP may not be at very high risk of TTP relapse during an ensuing next pregnancy but seem to have an elevated risk of preeclampsia. Monitoring of ADAMTS13 activity and inhibitor titre during pregnancy may help to guide management and to avoid disease recurrence. Finally, TTP needs to be distinguished from the much more frequent hypertensive pregnancy complications, preeclampsia and especially HELLP (Hemolysis, Elevated Liver Enzymes, Low Platelet count) syndrome.
Resumo:
OBJECTIVE Involvement of the pancreato-biliary system has been occasionally noted in Henoch-Schönlein purpura. Furthermore, cases of this vasculitis syndrome sometimes develop in the context of a viral hepatitis or after hepatitis vaccination. METHODS We completed a review of the literature. RESULTS Fifty reports published between 1977 and 2015 were retained for the analysis. A pancreato-biliary involvement was recognized in 34 individually well-described patients (♂:♀ = 19:15) with severe abdominal pain: pancreatitis (N = 20), acalculous cholecystitis (N = 11), both pancreatitis and cholecystitis (N = 3). In all of the pancreatitis patients, full recovery occurred (within ≤3 weeks in three-fourths of the patients). Cholecystectomy was performed in 8 cholecystitis patients. Seventeen Henoch-Schönlein patients (♂:♀ = 9:8) were associated with a viral liver disease and 4 (♂:♀ = 1:3) with a hepatitis vaccination. The vasculitis syndrome rapidly remitted in the 7 patients accompanying hepatitis A or E, in 2 patients of hepatitis B, and in the 4 patients preceded by a vaccination. Henoch-Schönlein purpura seemed to be serious in 5 patients with chronic hepatitis B and in 3 with chronic hepatitis C. CONCLUSIONS This analysis indicates that pancreato-biliary involvement is unusual in Henoch-Schönlein purpura. This complication deserves consideration in patients with especially severe abdominal pain. Finally, viral hepatitides and hepatitis vaccinations seem to be rare triggers of Henoch-Schönlein purpura.
Resumo:
The congenital form of thrombotic thrombocytopenic purpura (TTP) is caused by genetic mutations in ADAMTS13. Some, but not all, congenital TTP patients manifest renal insufficiency in addition to microangiopathic hemolysis and thrombocytopenia. We included 32 congenital TTP patients in the present study, which was designed to assess whether congenital TTP patients with renal insufficiency have predisposing mutations in complement regulatory genes, as found in many patients with atypical hemolytic uremic syndrome (aHUS). In 13 patients with severe renal insufficiency, six candidate complement or complement regulatory genes were sequenced and 11 missense mutations were identified. One of these missense mutations, C3:p.K155Q mutation, is a rare mutation located in the macroglobulin-like 2 domain of C3, where other mutations predisposing for aHUS cluster. Several of the common missense mutations identified in our study have been reported to increase disease-risk for aHUS, but were not more common in patients with as compared to those without renal insufficiency. Taken together, our results show that the majority of the congenital TTP patients with renal insufficiency studied do not carry rare genetic mutations in complement or complement regulatory genes.