314 resultados para Pups
Prenatal lipopolysaccharide reduces motor activity after an immune challenge in adult male offspring
Resumo:
Prenatal lipopolysaccharide (LPS) exposure causes reproductive, behavioral and neurochemical injuries in both the mother and pups. Previous investigations by our group showed that prenatal LPS administration (100 mu g/kg, i.p.) on gestational day 9.5 impaired the male offspring`s social behavior in infancy and adulthood. In the present study, we investigated whether these social behavioral changes were associated with motor activity impairment. Male rat pups treated prenatally with LPS or not were tested for reflexological development and open field general activity during infancy. In adulthood, animals were tested for open field general activity, haloperidol-induced catalepsy and apomorphine-induced stereotypy; striatal dopamine levels and turnover were also measured. Moreover, LPS-treated or untreated control pups were challenged with LPS in adulthood and observed for general activity in the open field. In relation to the control group, the motor behavior of prenatally treated male pups was unaffected at basal levels, both in infancy and in adulthood, but decreased general activity was observed in adulthood after an immune challenge. Also, striatal dopamine and metabolite levels were decreased in adulthood. In conclusion, prenatal LPS exposure disrupted the dopaminergic system involved with motor function, but this neurochemical effect was not accompanied by behavioral impairment, probably due to adaptive plasticity processes. Notwithstanding, behavioral impairment was revealed when animals were challenged with LPS, resulting in enhanced sickness behavior. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objective: This study investigates the effects of prenatal lipopolysaccharide (LPS) exposure on the maternal behavior of pregnant rats and the physical development and sexual behavior of their male offspring in adulthood. Methods: For two experiments, pregnant rats were injected with LPS (250 mu g/kg, i.p.) on gestation day (GD) 21. In the first experiment, the maternal behavior (postnatal day, PND, 6) and the dam`s open-field general activity (PND7) were evaluated. In the second experiment, the maternal pre- and postnatal parameters, the pup`s development, the offspring`s sexual behavior in adulthood, and the pup`s organ weights were assessed. Results: Compared to the control group, the LPS-treated dams presented reduced maternal behavior, decreased general activity, a smaller body weight difference between GD21 and PND1, a greater number of perinatal deaths, and smaller litters. For the male pups, LPS treatment resulted in a decreased body weight on PND2, whereas the anogenital distance and the day of testis descent were not modified. The male sexual behavior was impaired by prenatal LPS. Particularly the number of ejaculating animals was reduced. The testis weight was also lower in the prenatally LPS-treated rats than in the control rats. Conclusion: We propose that prenatal LPS exposure on GD21 acts as an imprinting factor that interferes with the programming of brain sexual determination in offspring. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Prenatal lipopolysaccharide (LPS) exposure causes reproductive, behavioral and neurochemical defects in both dams and pups. The present study evaluated male rats prenatally treated with LPS for behavioral and neurological effects related to the olfactory system, which is the main sensorial path in rodents. Pregnant Wistar rats received 100 mu g/kg of LPS intraperitoneally (i.p.) on gestational day (GD) 9.5, and maternal behavior was evaluated. Pups were evaluated for (1) maternal odor preference, (2) aversion to cat odor, (3) monoamine levels and turnover in the olfactory bulb (OB) and (4) protein expression (via immunoblotting) within the OB dopaminergic system and glial cells. Results showed that prenatal LPS exposure impaired maternal preference and cat odor aversion and decreased dopamine (DA) levels in the OB. This dopaminergic impairment may have been due to defects in another brain area given that protein expression of the first enzyme in the DA biosynthetic pathway was unchanged in the OB. Moreover, there was no change in the protein expression of the DA receptors. The fact that the number of astrocytes and microglia was not increased suggests that prenatal LPS did not induce neuroinflammation in the OB. Furthermore, given that maternal care was not impaired, abnormalities in the offspring were not the result of reduced maternal care. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The behavioral effects of the K-opioid receptor agonist U69593 were examined in lactating rats. On day 5 of lactation, animals were treated with 0.1 mg/kg of U69593 to determine whether it influences general activity and maternal latencies toward pups. Because little attention has been given to the possibility that pre-mating treatment with morphine may modulate the response to K-opioid receptor stimulation, another group of animals was submitted to the same acute challenge after abrupt withdrawal from repeated treatment with morphine sulfate during the pre-mating period (5 mg/kg on alternate days for a total of five doses). Acute F;opioid stimulation reduced total locomotion, rearing frequency, and time spent self-grooming and increased immobility duration. These K agonist effects were not observed in animals pretreated with morphine. Similarly, latencies to retrieve pups were longer only in animals pretreated with saline and challenged acutely with U69593. None of these effects were observed in morphine sulfate-pretreated animals. The present results suggest that pre-mating repeated exposure to morphine produces a tolerance-like effect on behavioral responses to low-dose K-opioid receptor stimulation in active reproductive females. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Aims: There has been emerging interest in the prenatal determinants of respiratory disease. In utero factors have been reported to play a role in airway development, inflammation, and remodeling. Specifically, prenatal exposure to endotoxins might regulate tolerance to allergens later in life. The present study investigated whether prenatal lipopolysaccharide (LPS) administration alters subsequent offspring allergen-induced inflammatory response in adult rats. Main methods: Pregnant Wistar rats were treated with LPS (100 mu g/kg, i.p.) on gestation day 9.5 and their ovariectomized female offspring were sensitized and challenged with OVA later in adulthood. The bronchoalveolar lavage (BAL) fluid, peripheral blood, bone marrow leukocytes and passive cutaneous anaphylaxis were evaluated in these 75-day-old pups. Key findings: OVA sensitized pups of NaCl treated rats showed an increase of leucocytes in BAL after OVA challenge. This increase was attenuated, when mothers were exposed to a single LPS injection early in pregnancy. Thus, LPS prenatal treatment resulted in (1) lower increased total and differential (macrophages, neutrophils, eosinophils and lymphocytes) BAL cellularity count; (2) increased number of total, mononuclear and polymorphonuclear cells in the peripheral blood; and (3) no differences in bone marrow cellularity or passive cutaneous anaphylaxis. Significance: In conclusion, female pups treated prenatally with LPS presented an attenuated response to experimentally-induced asthma. We observed reduced immune cell migration from peripheral blood to the lungs, with no effect on the production of bone marrow cells or antibodies. It was suggested that inflammatory events such as exposure to LPS in early fetal life can attenuate allergic inflammation in the lung, which is a common symptom in asthma. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This study aimed to standardize signs and diagnostic criteria of respiratory function in newborn puppies delivered normally or after dystocia and caesarean operation. A total of 48 neonates were allocated into groups: eutocia (n = 20), dystocia (n = 8), caesarean (c)-section (n = 20). Neonatal health was assessed using the Apgar score and body temperature was determined at 0, 5 and 60 min after delivery. Venous blood gases (pO(2) and SO(2)) was measured immediately and 60 min after delivery, and a thoracic radiograph was made between 0 and 5 min of life. The c-section group had significantly lower Apgar scores at birth and 5 min. Hypothermia was present at 5 min in the eutocia and c-section groups, and at 60 min in all groups. The eutocia group had an irregular respiratory pattern in 78% of puppies at birth, 27.7% at 5 min and 21% at 60 min compared with 87.5%, 62.5% and 12.5% of the pups in the dystocia group where there was irregular respiratory rhythm, moderate to intense respiratory sounds with agonic episodes. The c-section group had respiratory alterations in 70%, 45% and 16% of puppies at 0, 5 and 60 min, respectively. Radiographic abnormalities were present in 17% of the pups in the eutocia group, 25% of the pups in the dystocia group and 30% of the pups in the c-section group, respectively. The c-section group had significantly lower SO(2) values at 60 min than at birth. All puppies had hypoxaemia, but a significant decrease was observed in the c-section group. Newborn puppies had tissue hypoxia and irregular respiratory pattern at birth. Caesarean-section puppies had lower vitality; however, all developed satisfactory Apgar scores at 5 min of life, regardless of the obstetric condition.
Resumo:
There are limited data concerning blood gas parameters in neonatal dogs. Knowledge of the normal physiology may facilitate effective therapeutic intervention and potentially reduce neonatal mortality. This study examined acid-base parameters in pups born at normal parturition (n = 27) compared with those born after obstetrical assistance or caesarean operation (n = 13) and those born following oxytocin (OXY) administration for treatment of uterine inertia (n = 11). Pups were subjected to an objective scoring method of neonatal health adapted from use in humans (the Apgar score) at birth and again at 5 and 60 min after birth. Venous blood samples were collected at 5 and 60 min after birth for evaluation of blood gas parameters. At birth, all pups had low Apgar scores and a mixed acidosis. The base excess was lowest for pups delivered after OXY administration. The Apgar score improved for all pups after 5 min of birth and there was an improvement in carbon dioxide tension, base excess and venous blood pH at 1 h, although in all pups a metabolic acidosis persisted. These data provide an important insight into neonatal physiology and the variability of blood gas parameters in pups born at normal and abnormal parturition and provide the basis for clinical decision making following dystocia.
Resumo:
Our aim was to investigate whether neonatal LPS challenge may improve hormonal, cardiovascular response and mortality, this being a beneficial adaptation when adult rats are submitted to polymicrobial sepsis by cecal ligation and puncture (CLP). Fourteen days after birth, pups received an intraperitoneal injection of lipopolysaccharide (LPS; 100 mu g/kg) or saline. After 8-12 weeks, they were submitted to CLP, decapitated 4,6 or 24 h after surgery and blood was collected for vasopressin (AVP), corticosterone and nitrate measurement, while AVP contents were measured in neurohypophysis, supra-optic (SON) and paraventricular (PVN) nuclei. Moreover, rats had their mean arterial pressure (MAP) and heart rate (HR) evaluated, and mortality and bacteremia were determined at 24 h. Septic animals with neonatal LPS exposure had higher plasma AVP and corticosterone levels, and higher c-Fos expression in SON and PVN at 24 h after surgery when compared to saline treated rats. The LPS pretreated group showed increased AVP content in SON and PVN at 6 h, while we did not observe any change in neurohypophyseal AVP content. The nitrate levels were significantly reduced in plasma at 6 and 24 h after surgery, and in both hypothalamic nuclei only at 6 h. Septic animals with neonatal LPS exposure showed increase in MAP during the initial phase of sepsis, but HR was not different from the neonatal saline group. Furthermore, neonatally LPS exposed rats showed a significant decrease in mortality rate as well as in bacteremia. These data suggest that neonatal LPS challenge is able to promote beneficial effects on neuroendocrine and cardiovascular responses to polymicrobial sepsis in adulthood. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Early-life events may induce alterations in neuronal function in adulthood. A crucial aspect in studying long-lasting effects induced by environmental interventions imposed to the animal several weeks before is finding a stable change that could be causally related to the phenotype observed in adulthood. In order to explain an adult trait, it seems necessary to look back to early life and establish a temporal line between events. The neonatal handling procedure is an experimental tool to analyze the long-lasting impact of early-life events. Aside from the neuroendocrine response to stress, neonatal handling also alters the functionality of the hypothalamus-pituitary-gonad (HPG) axis. Reductions in ovulation and surge of the luteinizing hormone (LH) on the proestrous day were shown in female rats. Considering the importance of the medial preoptic area (MPA) for the control of ovulation, the present study aimed to verify the effects of neonatal handling on the numerical density and cell size in the MPA in 11-day-old and 90-day-old female rats. Cellular proliferation was also assessed using BrdU (5-bromo-2`-deoxyuridine) in 11-day-old pups. Results showed that neonatal handling induces a stable reduction in the number of cells and in the size of the cell soma, which were lower in handled females than in nonhandled ones at both ages. Cellular proliferation in the MPA was also reduced 24 h after the last manipulation. The repeated mother-infant disruption imposed by the handling procedure ""lesioned"" the MPA. The dysfunction in the ovulation mechanisms induced by the handling procedure could be related to that neuronal loss. The study also illustrates the impact of an environmental intervention on the development of the brain. (C) 2008 Elsevier B.V. All rights reserved
Resumo:
Purpose: To determine whether constriction of proximal arterial vessels precedes involution of the distal hyaloid vasculature in the mouse, under normal conditions, and whether this vasoconstriction is less pronounced when the distal hyaloid network persists, as it does in oxygen-induced retinopathy (OIR). Methods: Photomicrographs of the vasa hyaloidea propria were analysed from pre-term pups (1-2 days prior to birth), and on Days 1-11 post-birth. The OIR model involved exposing pups to similar to 90% O-2 from D1-5, followed by return to ambient air. At sampling times pups were anaesthetised and perfused with india ink. Retinal flatmounts were also incubated with FITC-lectin (BS-1, G. simplicifolia,); this labels all vessels, allowing identification of vessels not patent to the perfusate. Results: Mean diameter of proximal hyaloid vessels in preterm pups was 25.44 +/- 1.98 mum; +/-1 SEM). Within 3-12 hrs of birth, significant vasoconstriction was evident (diameter:12.45 +/- 0.88 mum), and normal hyaloid regression subsequently occurred. Similar vasoconstriction occurred in the O-2-treated group, but this was reversed upon return to room air, with significant dilation of proximal vessels by D7 (diameter: 31.75 +/- 11.99 mum) and distal hyaloid vessels subsequently became enlarged and tortuous. Conclusions: Under normal conditions, vasoconstriction of proximal hyaloid vessels occurs at birth, preceding attenuation of distal hyaloid vessels. Vasoconstriction also occurs in O-2-treated pups during treatment, but upon return to room air, the remaining hyaloid vessels dilate proximally, and the distal vessels become dilated and tortuous. These observations support the contention that regression of the hyaloid network is dependent, in the first instance, on proximal arterial vasoconstriction.
Resumo:
The mechanisms whereby tissue sensitivity to PRL is controlled are not well understood. Here we report that expression of mRNA and protein for members of the SOCS/CIS/JAB family of cytokine signaling inhibitors is increased by PRL administration in ovary and adrenal gland of the lactating rat deprived of circulating PRL and pups for 24 h but not in mammary gland. Moreover, suckling increases SOCS mRNA in the ovary but not in the mammary gland of pup-deprived rats. Deprivation of PRL and pups for 48 h allows the mammary gland to induce SOCS genes in response to PRL administration, and this is associated with a decrease in basal SOCS-3 mRNA and protein expression to the level seen in other tissues, suggesting that SOCS-3 induced refractoriness related to filling of the gland. In reporter assays, SOCS-1, SOCS-3, and CIS, but not SOCS-2, are able to inhibit transactivation of the STAT 5-responsive beta -lactoglobulin promoter in transient transfection assays. Moreover, suckling results in loss of ovarian and adrenal responsiveness to PRL administered 2 h after commencement of suckling, as determined by STAT 5 gel shift assay. Immunohistochemistry was used to localize the cellular sites of SOCS-3 and CIS protein expression in the ovary and adrenal gland. We propose that induced SOCS-1, SOCS-3, and CIS are actively involved in the cellular inhibitory feedback response to physiological PRL surges in the corpus luteum and adrenal cortex during lactation, but after pup withdrawal, the mammary gland is rendered unresponsive to PRL by increased levels of SOCS-3.
Resumo:
Flying foxes are commonly thought of as highly social mammals, yet little is known about the dynamics of their social interactions at a day roost. The aim of the present study was to examine the nature of the seasonal activities of territoriality and courtship amongst wild flying foxes in Australia. Focal observations were conducted at two permanent roosts of black flying foxes Pteropus alecto during periods of peak social interaction in the summers of 1999 and 2000 in urban Brisbane, Queensland. Observations of male territoriality were conducted at dawn and began eight weeks prior to the commencement of mating. The majority of defense bouts (87%) consisted of ritualised pursuit, while 13% of bouts involved physical contact expressed as either wrestling or hooking. One male with an unusually large territory took significantly longer to defend it than other males with less territory to defend. Observations of courtship revealed repetitive courtship sequences, including pre-copulatory approaches by the males, copulation attempts and grooming/resting periods. Thirty-four complete courtship sequences incorporating 135 copulation attempts were recorded over two seasons. Females actively resisted courtship approaches by males, forcing males to display a continuous determination to mate over time where determination can be considered an indicator of 'fitness'. The courtship bout length of females with suckling young was significantly longer ((x) over bar +/- SE; 230.9 +/- 22.16 s) than that of females unencumbered by large pups (158.5 +/- 9.69 s), although the length of copulations within those courtships was not (45.6 +/- 5.19 versus 36.2 +/- 3.43 s).
Resumo:
Fetal alcohol syndrome (FAS) is the leading cause of mental retardation in western society. We investigated possible changes in glutamate receptor levels in neonatal animals following ethanol exposure using radioligand binding and western blot analysis. We used a vapor chamber to administer ethanol to neonatal Wistar rats 3 h a day from postnatal day (PND) 4-9. A separation control group was separated from their mothers for the same time and duration as the vapor treatment, while a normal control group was left to develop normally. Daily ethanol administrations resulted in decreased brain weight and body weight, as well as microencephaly (decreased brain:body weight ratio). Neither the affinity nor maximum binding of [H-3]MK-801 (dizoclipine maleate) in the cortex of PND10 rats differed between treatment groups. Western blot analysis also failed to reveal any changes in NMDAR1, NMDAR2A, or NMDAR2B receptor levels. In contrast, the AMPA receptor subunit GluR1 was greatly reduced in vapor-treated pups compared with control pups, as revealed by western blot analysis. A similar reduction was found in westerns with an antibody recognizing the GluR2 and 4 subunits. These results indicate that ethanol reduces AMPA rather than NMDA receptors in the developing neocortex, possibly by blocking NMDA receptors during development. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Este plan de trabajos es continuidad de una línea de investigación centrada en evaluar los mecanismos responsables de la adquisición, expresión y persistencia de experiencias con el etanol. A partir de ello, indagar acerca de los efectos de esta experiencia sobre comportamientos de búsqueda y autoadministración de etanol en neonatos e infantes de rata. Se pretende analizar la participación del sistema opiáceo en los mecanismos implicados en una memoria fetal y/o infantil, generada como consecuencia de la exposición etílica. En una primera etapa, nos proponemos establecer de qué manera experiencias prenatales con la droga modulan el patrón de auto-administración de alcohol y otros reforzadores, como sacarosa. En este primer bloque de experimentos realizaremos manipulaciones fetales para determinar con mayor grado de especificidad la posible acción del sistema opiáceo en los mecanismos de adquisición de una memoria etílica prenatal. Se realizarán administraciones de etanol y el antagonista opiáceo, directamente a nivel fetal, y se evaluará esta experiencia en un paradigma de condicionamiento neonatal positivo, mediado por la droga. De acuerdo a la evidencia previa, esperamos que la exposición prenatal con la droga facilite la expresión de conductas de consumo y búsqueda del etanol o hacia las claves que señalizan al psicotrópico, tanto durante la infancia como en el neonato. A su vez, cuando la droga es presentada bajo los efectos de un antagonista opiáceo esperamos que estas conductas muestren un perfil similar a las desplegadas por sujetos controles. El segundo bloque de experimentos ha sido ideado con el objeto de indagar acerca de la posible participación del sistema opiáceo en la modulación de los aspectos reforzantes de la droga, a través de un esquema de auto-administración etílica infantil. Se utilizará un paradigma de condicionamiento instrumental adaptado para ratas infantes que consta de dos instancias, una de adquisición de la conducta instrumental (DPs 14-17) en la cual los animales reciben un pulso de refuerzo, como consecuencia de la ejecución de la conducta operante. En una segunda fase se analiza el patrón de búsqueda del reforzador ya que se registra la respuesta instrumental, sin que ocurra el refuerzo por la misma. Para analizar la participación del sistema opiáceo, durante la fase de adquisición de la conducta operante (DPs 16 y 17) los animales serán re-expuestos a mínimas cantidades del reforzador, bajo los efectos de un antagonista opiáceo, momentos previos al ensayo instrumental correspondiente para cada uno de estos días (Exp. 3). Esperamos que el bloqueo del sistema opiáceo, durante esta re-exposición al etanol, sea suficiente para disminuir el patrón de respuesta instrumental hacia el refuerzo etílico. Un último experimento incorporará un tercer evento de re-exposición al etanol -bajo los efectos del antagonista- previo al ensayo de extinción de la conducta instrumental (DP 18). Este nuevo evento tiene por objeto analizar la participación de este sistema neurobiológico en los mecanismos de búsqueda de etanol. Si el sistema opiáceo participa en la modulación de patrones tanto de búsqueda como consumatorios del reforzamiento por etanol, se espera que la re-exposición a la droga bajo los efectos del antagonista, inhiba estas respuestas tanto durante la sesión de adquisición, como de extinción de la conducta operante. Este proyecto intenta profundizar en el conocimiento de los mecanismos que regulan reconocimiento, aceptación, búsqueda y consumo de etanol, como consecuencia de experiencias tempranas con la droga. A su vez, es importante identificar y estudiar los sistemas neurobiológicos involucrados en estos mecanismos. Es por ello que se intenta determinar el rol que ejerce el sistema opiáceo en la adquisición de estas experiencias etílicas a nivel fetal e infantil, que se conoce promueven la búsqueda y el consumo de la droga. Our work is directed to analyze the involvement of the opioid system in the generation of pre- and early postnatal ethanol-related memories. As a first step, maternal manipulations with ethanol will be done. Infants will be evaluated in a paradigm of infantile self-administration of different reinforcers (ethanol, sucrose or water), employing a model of operant conditioning adapted to infant rats. A second experiment will be conducted in order to analyze if a central administration of ethanol, directly to the fetus, modifies subsequent patterns of neonatal conditioned responses to an artificial nipple, mediated by ethanol reinforcing effects. Fetal presentation of ethanol will be accompanied with the injection of an opioid antagonist in order to analyze the involvement of this system in acquisition processes of a fetal ethanol-mediated memory. A second set of studies will be conducted to analyze appetitive and consummatory behaviors in an infant model of ethanol self-administration. Involvement of opioid system in the acquisition or expression of this experience will be also inquired. Infant rats (PDs14-17) have to display a target behavior (nose-poke) to gain access to 5% sucrose or 3.75% ethanol. On PD18 an extinction session will be included. At PDs16-17, 6-hr before training, pups will be re-exposed to ethanol under opioid antagonism effects (naloxone). In a follow up experiment, a re-exposure trial will be included at PD18. Prior extinction, pups will receive naloxone and will be re-exposed to ethanol. We aim to observe if opioid system is modulating etha¬nol reinforcing effects, in terms of both appetitive and consummatory behaviors.