977 resultados para Pumping (laser)
Resumo:
Thermal effects in Nd:YAG planar waveguide lasers with non-symmetrical claddings are discussed. The heat generated in the active core can be removed more efficiently by directly contacting the active core to the heat sink. Several cladding materials are compared to optimize the heat removal. Furthermore, uniform pumping is achieved with oblique edge-pumping technique. Using quasi-CW pumping at 1 KHz repetition rate, an average output power of 280 W with a slope efficiency of 38% is obtained with a positive unstable resonator. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
By using a continuous-wave Ti:sapphire laser as a pumping source, we demonstrated a passively Q-switched Yb:YAG laser at room temperature with Cr4+:YAG as the saturable absorber. We achieved an average output power of as much as 55 mW at 1.03 mum with a pulse width (FWHM) as short as 350 ns. The initial transmission of the Cr4+:YAG has an effect on the pulse duration (FWHM) and the repetition rate of the Yb:YAG passively Q-switched laser. The Yb:YAG crystal can be a most promising passively Q-switched laser crystal for compact, efficient, solid-state lasers. (C) 2001 Optical Society of America.
Resumo:
An efficient diode-pumped laser was demonstrated by using an ytterbium-doped laser crystal, Yb:Gd2SiO5 (Yb:GSO), wherein Yb3+ ions exhibit the largest ground-state splitting among all the ytterbium-doped crystals. The Yb:GSO laser can be operated at a low pumping threshold, and the most efficient laser occurs around 1088 nm since the corresponding emission band has the largest emission cross section and the lowest thermal population. A slope efficiency of 75% was demonstrated for a continuous-wave Yb:GSO laser at 1094 nm, and self-pulsed lasers were achieved within the tunable range of 1091-1105 nm, which are the longest laser wavelengths achieved for Yb3+ lasers. (c) 2006 American Institute of Physics.
Resumo:
Low-threshold and highly efficient continuous-wave laser performance of Yb:Y3Al5O12 (Yb:YAG) single crystal grown by a temperature gradient technique (TGT) was achieved at room temperature. The laser can be operated at 1030 and 1049 nm by varying the transmission of the output coupler. Slope efficiencies of 57% and 68% at 1049 and 1030 nm, respectively, were achieved for 10 at. % Yb:YAG sample in continuous-wave laser-diode pumping. The effect of pump power on the laser emission spectrum of both wavelengths is addressed. The near-diffraction-limited beam quality for different laser cavities was achieved. The excellent laser performance indicates that TGT-grown Yb:YAG crystals have very good optical quality and can be potentially used in high-power solid-state lasers.
Resumo:
We demonstrated efficient laser action of a new ytterbium-doped oxyorthosilicate crystal Yb:LuYSiO5 ( Yb: LYSO) under high-power diode-pumping. The spectroscopic features and laser performance of the alloyed oxyorthosilicate crystal are compared with those of ytterbium-doped lutetium and yttrium oxyorthosilicates. In the continuous-wave laser operation of Yb: LYSO, a maximal slope efficiency of 96% and output power of 7.8 W were respectively achieved with different pump sources. The Yb: LYSO laser exhibits not only little sensitivity to the pump wavelength drift but also a broad tunability. By using a dispersive prism as the intracavity tuning element, we demonstrated that the continuous-wave Yb: LYSO laser exhibit a continuous tunability in the spectral range of 1014-1091 nm. (c) 2006 Optical Society of America.
Resumo:
Infrared (1.2-1.6 mum) luminescence in a yttrium aluminium garnet (YAG) crystal, co-doped with Yb (10 at.%) and Cr (0.05 at.%) ions, was investigated under CW laser diode pumping (lambda = 940 nm). The Cr4+ emission band was observed with its peak at 1.35 mum and measured to be about 6% with respect to Yb3+ IR luminescence (lambda = 1.03 mum). Analysis of the crystal absorption and luminescence spectra allows one to conclude that Yb3+-Cr4+ energy transfer is a mechanism responsible for the B-3(2)(T-3(2))-B-3(1)((3)A(2)) emission of Cr4+ ions. This crystal is promising as an efficient source of the near infrared emission. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
For the first time to our knowledge, the laser performance of Yb3+, Na+-codoped CaF2 single crystals was demonstrated. Self-Q-switched laser operation at 1050nm was observed for 976 nm diode pumping at room temperature. On 5 W of incident power, the repetition rate and width of the self-Q-switched pulses reached 28 kHz and 1.5 mu s, respectively. A maximal slope efficiency of 20.3% and minimal threshold absorbed pump power of 30 mW were respectively achieved with different output couplers, showing the promising application of Yb3+, Na+-codoped CaF2 crystals as compact and efficient solid-state lasers. (C) 2005 Optical Society of America.
Resumo:
Infrared (1.2-1.6 mu m) luminescence in a ytterbium aluminium garnet (YbAG) crystal, doped with Cr (0.05 at.%) ions, was investigated under CW laser diode pumping (lambda = 940 nm). The Cr4+ emission band was observed with its peak at 1.34 mu m and measured to be about 1.3 times with respect to Yb3+ IR luminescence (lambda = 1.03 mu m). We demonstrate that for the excitation wavelength of 940 nm Yb3+ ions act as sensitizers of the B-3(2)(T-3(2))-B-3(1)((3)A(2)) emission of Cr4+ ions. This crystal is promising as a high-efficient system for tunable laser (1.2-1.6 mu m) output. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Yb:Gd2SiO5 (Yb:GSO) exhibits a large fundamental manifold splitting. Its long-wavelength emission band around 1088 nm, which has the largest emission cross section, encounters the lowest reabsorption losses caused by thermal population of the terminal laser level. As a result, low-threshold and tunable continuous-wave Yb:GSO lasers were demonstrated. A slope efficiency up to 86% and a pumping threshold as low as 127 mW were achieved for a continuous-wave Yb:GSO laser at 1092.5 nm under the pump of a high-brightness laser diode. A continuous tunability between 1000 and 1120 nm was realized with an SF14 prism as the intracavity tuning element. (c) 2006 American Institute of Physics.
Three-photon-excited upconversion luminescence of Ce3+: YAP crystal by femtosecond laser irradiation
Resumo:
Infrared to ultraviolet and visible upconversion luminescence was demonstrated in trivalent cerium doped YAlO3 crystal (Ce3+: YAP) under focused infrared femtosecond laser irradiation. The fluorescence spectra show that the upconverted luminescence comes from the 5d-4f transitions of trivalent cerium ions. The dependence of luminescence intensity of trivalent cerium on infrared pumping power reveals that the conversion of infrared radiation is dominated by three-photon excitation process. It is suggested that the simultaneous absorption of three infrared photons pumps the Ce3+ ion into upper 5d level, which quickly nonradiatively relax to lowest 5d level. Thereafter, the ions radiatively return to the ground states, leading to the characteristic emission of Ce3+. (c) 2005 Optical Society of America.
Resumo:
By using a pump recycling configuration, the maximum power of 8.1 W in the wavelength range 1.935-1.938 mu m is generated by a 5-mm long Tm:YAlO3 (4 at. %) laser operating at 18 degrees C with a pump power of 24 W. The highest slope efficiency of 42% is attained, and the pump quantum efficiency is up to 100%. The Tm:YAlO3 laser is employed as a pumping source of singly-doped Ho(l%):GdVO4 laser operating at room temperature, in which continuous wave output power of greater than 0.2 W at 2.05 mu m is achieved with a slope efficiency of 9%.
Resumo:
Compact femtosecond laser operation of Yb:Gd2SiO5 (Yb:GSO) crystal was demonstrated under high-brightness diode-end-pumping. A semiconductor saturable absorption mirror was used to start passive mode-locking. Stable mode-locking could be realized near the emission bands around 1031, 1048, and 1088 nm, respectively. The mode-locked Yb: GSO laser could be tuned from one stable mode-locking band to another with adjustable pulse durations in the range 1 similar to 100 ps by slightly aligning laser cavity to allow laser oscillations at different central wavelengths. A pair of SF10 prisms was inserted into the laser cavity to compensate for the group velocity dispersion. The mode-locked pulses centered at 1031 nm were compressed to 343 fs under a typical operation situation with a maximum output power of 396 mW. (c) 2007 Optical Society of America.
Resumo:
We report on room temperature laser actions of a novel thulium-doped crystal Tm center dot Lu2SiO5 (LSO) under diode pumping. An optical optical conversion efficiency of 12% and a slope efficiency of 21% were obtained with the maximum continuous wave (CW) output power of 0.67 W. The emission wavelengths of Tm LSO laser were centered at 2058.4 nm with bandwidth of similar to 13.6 nm.
Resumo:
This paper reports that the TM3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The room-temperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Omega(2)=9.3155 x 10(-20) cm(2), Omega(4)=8.4103 x 10(-20) cm(2), Omega(6)=1.5908 x 10(-20) cm(2), the fluorescence lifetime is calculated to be 2.03 ms for F-3(4) -> H-3(6) transition, and the integrated emission cross section is 5.81 x 10(-18) cm(2). Room-temperature laser action near 2 mu m under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuous-wave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06 mu m with spectral bandwidth of similar to 13.6 nm.